Skip to main content
Log in

Nanosecond pulsed excimer laser machining of chemical vapour deposited diamond and highly oriented pyrolytic graphite: Part I An experimental investigation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A laser beam offers the benefits of high precision, contamination-free, high speed, and low bulk temperature for machining of chemically vapour deposited (CVD) diamond thin films that in turn enable ultrafine finishing of diamond coated cutting tool inserts and drills, and for finishing and drilling of diamond coated multichip module applications. In this work, laser hole drilling and polishing of CVD diamond (free-standing diamond and coated tool inserts) and HOPG (highly oriented pyrolytic graphite) using a 248 nm wavelength, 23 ns pulsed excimer laser were conducted. The threshold energy fluence required for ablation of diamond and graphite was nearly the same but the material removal rate rapidly increases with the energy fluence for the graphite compared to diamond. At an energy fluence of 10 J cm-2, the depth removed per pulse was 0.05 μm and 0.30 μm for diamond and graphite respectively. Raman microprobe analysis indicates that the laser machining induced the transformation of diamond to disordered forms of carbon in CVD diamond and some transformation of graphite to diamond in HOPG. The experimental data indicates that the transformation of diamond to graphite requires an energy input of 1.44 × 107 J per mole. For a given set of laser parameters, the depth per pulse was substantially higher for diamond coated tool inserts compared to the free-standing diamond. The surface roughness of CVD diamond was reduced by 0.25 μm per pulse at an energy fluence of 16 J cm-2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. D. GRESSER, Laser sawing of diamonds, Dearborn, MI, 1976. Technical Paper MR76-855 (Society of Manufacturing Engineers, Dearborn, MI, 1976) pp. 111.

    Google Scholar 

  2. J. WILKS and E. WILKES, “Properties and Applications of Diamond” (Courier International Ltd., Boston, MA, 1991).

    Google Scholar 

  3. M. ROTHSCHILD, C. ARNONE and D. J. EHRLICH, J. Vac. Sci. Technol. B 4 (1986) 310.

    Article  CAS  Google Scholar 

  4. A. P. MALSHE, S. T. KSHIRSAGAR and K. S. CHARI, Mater. Lett. 11 (1991) 175.

    Article  CAS  Google Scholar 

  5. A. HIRATA, H. TOKURA and M. YOSHIKAWA, in “Applications of Diamond Films and Related Materials”, edited by Y. Tzeng (Elsevier, New York, 1991) pp. 227232.

    Google Scholar 

  6. N. N. EFREMOW, M. W. GEIS, D. C. FLANDERS, G. A. LINCOLN and N. P. ECONOMOU, J. Vac. Sci. Technol. B 3 (1985) 416.

    Article  CAS  Google Scholar 

  7. A. B. HARKER, in “Applications of Diamond Films and Related Materials”, edited by Y. Tzeng (Elsevier, New York, 1991) pp. 223225.

    Google Scholar 

  8. M. HASHISH and D. H. BOTHELL, in “Diamond Optics V”, SPIE Vol. 1759, edited by A. Feldman and S. Holly (The Society of Photo-Optimal Instrumentation Engineers, Bellingham, WA, 1992) pp. 97105.

    Google Scholar 

  9. M. B. MORAN, K. A. KLEMM and L. F. JOHNSON, in “Applications of Diamond Films and Related Materials”, edited by Y. Tzeng (Elsevier, New York, 1991) p. 236.

    Google Scholar 

  10. S. JIN, J. E. GRAEBNER and T. H. TIEFEL, in “Diamond Optics V”, SPIE Vol. 1759, edited by A. Feldman and S. Holly (The Society of Photo-Optimal Instrumentation Engineers, Bellingham, WA, 1992) pp. 5767.

    Google Scholar 

  11. C. P. CHRISTENSEN, in “Lasers as Tools for Manufacturing”, SPIE Vol. 2062, edited by L. Migliore and R. Walker (The Society of Photo-Optimal Instrumentation Engineers, Bellingham, WA, 1993) pp. 1421.

    Google Scholar 

  12. Laser Energetics Inc. LEX-BDS-1000992 Beam Delivery System Laser Energetics Inc, Orlando, FL.

  13. R. M. WHITE, J. Appl. Phys. 34 (1963) 3559.

    Article  Google Scholar 

  14. R. BULLOUGH and J. J. GILMAN, ibid. 37 (1966) 2283.

    Article  Google Scholar 

  15. D. BAUERLE, In “NATO ASI series E: applied sciences Vol. 265”, Excimer Lasers, edited by L. Laude (Kluwer Academic Publishers, Boston, MA, 1994) p. 44.

    Google Scholar 

  16. V. P. AGEEV, L. L. BUILOV, V. I. KONOV, A. V. KUZMICHEV, S. M. PIMENOV and A. M. PROKHOROV, Dokl. Akad. Nauk SSSR 303 (1988) 598.

    CAS  Google Scholar 

  17. A. INAM, X. D. WU, T. VENKATESAN, S. B. OGALE, C. C. CHANG and D. DIJKKAMP, Appl. Phys. Lett. 51 (1987) 1112.

    Article  CAS  Google Scholar 

  18. S. PRAWER, R. KALISH and M. ADEL, ibid. 48 (1986) 1585.

    Article  CAS  Google Scholar 

  19. H. K. TONSHOFF and F. VON ALVENSLEBEN, in “Solid State Lasers IV”, SPIE Vol. 1864, edited by G. Quarles and M. Woodhill (The Society of Photo-Optimal Instrumentation Engineers, Bellingham, WA, 1993) pp. 96107.

    Google Scholar 

  20. T. V. KONONENKO, V. I. KONOV and V. G. RALCHENKO, in “Diamond Optics V”, SPIE Vol. 1759, edited by A. Feldman and S. Holly (The Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, 1992) pp. 106114.

    Google Scholar 

  21. V. N. TOKAREV and V. I. KONOV, in “Applications of Diamond Films and Related Materials”, edited by Y. Tzeng(Elsevier, New York, 1991) pp. 249255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WINDHOLZ, R., MOLIAN, P.A. Nanosecond pulsed excimer laser machining of chemical vapour deposited diamond and highly oriented pyrolytic graphite: Part I An experimental investigation. Journal of Materials Science 32, 4295–4301 (1997). https://doi.org/10.1023/A:1018611604403

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018611604403

Keywords

Navigation