Skip to main content
Log in

Applications of the Stell–Hemmer Potential to Understanding Second Critical Points in Real Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the novel properties of the Stell–Hemmer core-softened potentials. First we explore how the theoretically predicted second critical point for these potentials is related to the occurrence of the experimentally observed solid–solid isostructural critical point. We then discuss how this class of potentials can generate anomalies analogous to those found experimentally in liquid water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. C. Hemmer and G. Stell, Phys. Rev. Lett. 24:1284 (1970).

    Google Scholar 

  2. J. Rowlinson and B. Widom, J. Chem. Phys. 52:1670 (1970).

    Google Scholar 

  3. M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys. 4:216 (1963).

    Google Scholar 

  4. J. S. Høye and P. C. Hemmer, Phys. Norvegica 7:1 (1973).

    Google Scholar 

  5. A. Jayaramen, Phys. Rev. A 137:179 (1965).

    Google Scholar 

  6. Y. Yoshimura, Ber. Bunsenges. Phys. Chem. 95:135 (1991).

    Google Scholar 

  7. M. R. Sadr-Lahijany, A. Scala, S. V. Buldyrev, and H. E. Stanley, Phys. Rev. Lett. 81:4895 (1998); M. R. Sadr-Lahijany, A. Scala, S. V. Buldyrev, and H. E. Stanley, Phys. Rev. E 60:6714 (1999); A. Scala, M. R. Sadr-Lahijany, N. Giovambattista, S. V. Buldyrev, and H. E. Stanley, Waterlike anomalies for core-softened models of fluids: Two Dimensions, in preparation.

    Google Scholar 

  8. J. M. Kincaid, G. Stell, and C. K. Hall, J. Chem. Phys. 65:2161 (1976); J. M. Kincaid, G. Stell, and E. Goldmark, J. Chem. Phys. 65:2172 (1976); J. M. Kincaid and G. Stell, J. Chem. Phys. 67:420 (1977); C. K. Hall and G. Stell, Phys. Rev. A 7:1679 (1973).

    Google Scholar 

  9. R. I. Beecroft and C. A. Swenson, J. Phys. Chem. Sol. 15:234 (1960); B. L. Davis and L. H. Adams, J. Phys. Chem. Sol. 25:379 (1964); A. Jayaraman, Phys. Rev. Sec. A 137:179 (1965); J. M. Lawrence, M. C. Croft, and R. D. Parks, Phys. Rev. Lett. 35:289 (1975).

    Google Scholar 

  10. R. Sternheimer, Phys. Rev. 78:235 (1950); T. H. Hall, L. Merril, and J. D. Barnett, Science 146:1297 (1964); A. Jayaraman, Phys. Rev. 159:527 (1967); A. Jayaraman, Ann. Rev. Mat. Sci. 2:121 (1972); M. B. Maple and D. Wohlleben, AIP Conf. Proc. 18:447 (1974); P. W. Anderson and S. T. Chui, Phys. Rev. B 9:3229 (1975); A. Jayaraman, P. Dernier, and L. D. Longinotti, Phys. Rev. B 11:2783 (1975); A. W. Lawson and Ting-Yuan Tang, Phys. Rev. 76:301 (1949); A. F. Schuch and J. H. Sturdivant, J. Chem. Phys. 18:145 (1950); C. J. McHargue and H. Y. Yakel, Jr., Acta Metall. 8:637 (1960); M. Wilkinson, H. Child, C. McHargue, W. Koehler, and F. Wollan, Phys. Rev. 122:1409 (1961); R. Ramirez and L. M. Falivov, Phys. Rev. B 3:2425 (1975); L. F. Bates and M. M. Newmann, Proc. Phys. Soc. London 72:345 (1958).

    Google Scholar 

  11. K. K. Mon, N. W. Ashcroft, and G. V. Chester, Phys. Rev. B 19:5103 (1979).

    Google Scholar 

  12. I. Yokoyama and S. Ono, J. Phys. F: Met. Phys. 15:1215 (1985); K. Hoshino, C. H. Leung, I. L. McLaughlin, S. M. M. Rahman, and W. H. Young, J. Phys. F: Met. Phys. 17:787 (1987).

    Google Scholar 

  13. G. Stell and P. C. Hemmer, J. Chem. Phys. 56:4274 (1972).

    Google Scholar 

  14. P. G. Debenedetti, Metastable Liquids (Princeton University Press, Princeton, 1996); P. G. Debenedetti, V. S. Raghavan, and S. S. Borick, J. Phys. Chem. 95:4540 (1991); P. G. Debenedetti and M. C. Dantonio, AICHE J. 34:447 (1988).

    Google Scholar 

  15. H. Takahashi, Proc. Phys. Math. Soc. Jpn. 24:60 (1942); Mathematical Physics in One Dimension, E. H. Lieb and D. C. Mattis, eds. (Academic, New York, 1966), pp. 25-34.

    Google Scholar 

  16. T. Head-Gordon and F. H. Stillinger, J. Chem. Phys. 98:3313 (1993).

    Google Scholar 

  17. A. Ben-Naim, Statistical Thermodynamics for Chemists and Biochemists (Plenum Press, New York, 1992), pp. 233–238; C. H. Cho et al., Phys. Rev. Lett. 76:1651 (1996); M. Canpolat, F. W. Starr, A. Scala, M. R. Sadr-Lahijany, O. Mishima, S. Havlin, and H. E. Stanley, Chem. Phys. Lett. 294:9 (1998).

    Google Scholar 

  18. P. H. Poole, F. Sciortino, U. Essman, and H. E. Stanley, Nature 360:324 (1992); Phys. Rev. E 48:4605 (1993); the occurrence of a liquid_liquid critical point has indeed been observed for liquid phosphorus by Y. Katayama et al., Nature 403:170 (2000) and foot-note written by O. Mishima, Phys. Rev. Lett. 85:334 (2000).

    Google Scholar 

  19. D. A. Young and B. J. Alder, Phys. Rev. Lett. 38:1213 (1977); D. A. Young and B. J. Alder, J. Chem. Phys. 70:473 (1979).

    Google Scholar 

  20. E. A. Jagla, Phys. Rev. E 58:1478 (1998).

    Google Scholar 

  21. F. X. Prielmeier, E. W. Lang, R. J. Speedy, and H.-D. Lüdemann, Phys. Rev. Lett. 59:1128 (1987); Ber. Bunsenges. Phys. Chem. 92:1111 (1988); L. Haar, J. S. Gallagher, and G. S. Kell, NBS/NRC Steam Tables. Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units (Hemisphere Publishing Co., Washington, D.C., 1984), pp. 271-276.

    Google Scholar 

  22. S. Sastry, P. Debenedetti, F. Sciortino, and H. E. Stanley, “Singularity-Free Interpretation of the Thermodynamics of Supercooled Water,” Phys. Rev. E 53:6144–6154 (1996).

    Google Scholar 

  23. A. Scala, F. W. Starr, E. La Nave, F. Sciortino, and H. E. Stanley, Configurational entropy and diffusivity of supercooled water, Nature 406:166 (2000); E. La Nave, A. Scala, F. W. Starr, F. Sciortino, and H. E. Stanley, Instantaneous normal mode analysis of supercooled water, Phys. Rev. Lett. 84:4605 (2000).

    Google Scholar 

  24. F. W. Starr, S. Harrington, F. Sciortino, and H. E. Stanley, Phys. Rev. Lett. 82:3629 (1999); F. W. Starr, F. Sciortino, and H. E. Stanley, Phys. Rev. E 60:6757 (1999).

    Google Scholar 

  25. F. H. Stillinger and D. K. Stillinger, Physica A 244:358 (1997); F. H. Stillinger and T. A. Weber, J. Chem. Phys. 68:3837 (1978); 74:4015 (1981).

    Google Scholar 

  26. G. Adam and J. H. Gibbs, J. Chem. Phys. 43:139 (1965).

    Google Scholar 

  27. O. Mishima and H. E. Stanley, Nature 396:329 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scala, A., Sadr-Lahijany, M.R., Giovambattista, N. et al. Applications of the Stell–Hemmer Potential to Understanding Second Critical Points in Real Systems. Journal of Statistical Physics 100, 97–106 (2000). https://doi.org/10.1023/A:1018631426614

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018631426614

Navigation