Skip to main content
Log in

Mechanisms of fatigue-crack propagation in ductile and brittle solids

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The mechanisms of fatigue-crack propagation are examined with particular emphasis on the similarities and differences between cyclic crack growth in ductile materials, such as metals, and corresponding behavior in brittle materials, such as intermetallics and ceramics. This is achieved by considering the process of fatigue-crack growth as a mutual competition between intrinsic mechanisms of crack advance ahead of the crack tip (e.g., alternating crack-tip blunting and resharpening), which promote crack growth, and extrinsic mechanisms of crack-tip shielding behind the tip (e.g., crack closure and bridging), which impede it. The widely differing nature of these mechanisms in ductile and brittle materials and their specific dependence upon the alternating and maximum driving forces (e.g., ΔK andK max) provide a useful distinction of the process of fatigue-crack propagation in different classes of materials; moreover, it provides a rationalization for the effect of such factors as load ratio and crack size. Finally, the differing susceptibility of ductile and brittle materials to cyclic degradation has broad implications for their potential structural application; this is briefly discussed with reference to lifetime prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashby, M.F., Blunt, F.J. and Bannister, M. (1989). Flow characteristics of highly constrained metal wires. Acta Metallurgica 37, 1847-1857.

    Article  Google Scholar 

  • Badrinarayanan, K., McKelvey, A.L., Venkateswara Rao, K.T. and Ritchie, R.O. (1996). Fracture and fatigue-crack growth in ductile-phase toughened molybdenum disilicide: effects of niobium wire vs particulate reinforcements. Metallurgical and Materials Transactions A27, 3781-3792.

    ADS  Google Scholar 

  • Barenblatt, G.I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics 7, 55-129.

    Article  MathSciNet  Google Scholar 

  • Becher, P. (1991). Microstructural design of toughened ceramics. Journal of the American Ceramic Society 74, 255-269.

    Article  Google Scholar 

  • Bloyer, D.R., Venkateswara Rao, K.T. and Ritchie, R.O. (1996). Resistance-curve toughening in ductile/brittle layered structures: Behavior in Nb/Nb3Al laminates. Materials Science and Engineering A126, 80-90.

    Google Scholar 

  • Bloyer, D.R., Venkateswara Rao, K.T. and Ritchie, R.O. (1997). Fatigue-crack propagation behavior of ductile/brittle laminated composites. Metallurgical and Materials Transactions A, in press.

  • Campbell, J.P., Venkateswara Rao, K.T. and Ritchie, R.O. (1998). The effect of microstructure on fracture toughness and fatigue-crack growth behavior in γ-titanium aluminide based intermetallics. Metallurgical and Materials Transactions A, in press.

  • Campbell, J.P., Krizic, J.J., Lillibridge, S., Venkateswara Rao, K.T. and Ritchie, R.O. (1997). On the growth of small fatigue cracks in γ-based titanium aluminides. Scripta Materialia 37, 707-712.

    Article  Google Scholar 

  • Cao, H.C., Löfvander, J.P., Evans, A.G., Rowe, R.G. and Skelly, D.W. (1994). Mechanical properties of an in situ synthesized Nb/Nb3Al layered composite. Materials Science and Engineering A185, 87-95.

    Google Scholar 

  • Chan, K.S. (1995). Evidence of shear ligament toughening in TiAl-base alloys. Metallurgical and Materials Transactions A26, 1407-1418.

    ADS  Google Scholar 

  • Dauskardt, R.H. and Ritchie, R.O. (1991). Cyclic fatigue of ceramics, in Fatigue of Advanced Materials, (Edited by R.O. Ritchie, R.H. Dauskardt, and B.N. Cox), MCEP Ltd., Edgbaston, 133-151

    Google Scholar 

  • Dauskardt, R.H. (1993). A frictional-wear mechanism for fatigue-crack growth in grain bridging ceramics. Acta Metallurgica et Materialia 41, 2765-2781.

    Article  Google Scholar 

  • Dauskardt, R.H., Yu, W. and Ritchie, R.O. (1987). Fatigue crack propagation in transformation-toughened zirconia ceramic. Journal of the American Ceramic Society 70, C248-252.

    Article  Google Scholar 

  • Dauskardt, R.H., James, M.R., Porter, J.R. and Ritchie, R.O. (1992). Cyclic fatigue-crack growth in SiC-whisker-reinforced alumina ceramic composite: Long and small-crack behavior. Journal of the American Ceramic Society 75, 759-771.

    Article  Google Scholar 

  • Davidson, D.L. and Lankford, J. (1992). Fatigue crack growth in metals and alloys: Mechanisms and micromechanics. International Materials Reviews 37, 45-76.

    Google Scholar 

  • Dève, H.E., Evans, A.G., Odette, G.R., Mehrabian, R., Emiliani, M.L. and Hecht, R.J. (1990). Ductile reinforcement toughening of γ-TiAl: effects of debonding and ductility. Acta Metallurgica et Materialia 38, 1491-1502.

    Article  Google Scholar 

  • Dill, S.J., Bennison, S.J. and Dauskardt, R.H. (1997). Subcritical crack-growth behavior of borosilicate glass under cyclic loads: Evidence of a mechanical fatigue effect. Journal of the American Ceramic Society 80, 773-776.

    Article  Google Scholar 

  • Dowling, N.E. and Begley, J.A. (1976). Fatigue crack growth during gross plasticity and the J-intetral, in Mechanics of Crack growth, ASTM STP 590, Am. Soc. Test. Matls., Philadelphia, 82-103.

    Google Scholar 

  • Elber, W. (1970). Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics 2, 37-45.

    Article  Google Scholar 

  • Ellyin, F. (1997). Fatigue Damage, Crack Growth and Life Prediction, Chapman & Hall, London.

    Google Scholar 

  • Evans, A.G. and Fuller, E.R. (1974). Crack propagation in ceramic materials under cyclic loading conditions. Metallurgical Transactions A 5A, 27.

    ADS  Google Scholar 

  • Evans, A.G. (1990). Perspective on the development of high toughness ceramics. Journal of the American Ceramic Society 73, 187-206.

    Article  Google Scholar 

  • Foote, R.M.L., Mai, Y.-W. and Cotterell, B. (1986). Crack growth resistance curves in strain-softening materials. Journal of Mechanics and Physics of Solids 34, 593-607.

    Article  ADS  Google Scholar 

  • Gilbert, C.J., Cao, J.J., MoberlyChan, W.J., DeJonghe, L.C. and Ritchie, R.O. (1996). Cyclic fatigue and resistance-curve behavior of an in situ toughened silicon carbide with Al-B-C additions. Acta Materialia 44, 3199-3214.

    Article  Google Scholar 

  • Gilbert, C.J., Ritchie, R.O. and Johnson, W.L. (1997). Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass. Applied Physics Letters 71, 476-478.

    Article  ADS  Google Scholar 

  • Gilbert, C.J. and Ritchie, R.O. (1997). Mechanisms of cyclic fatigue-crack propagation in a fine-grained alumina ceramic: Role of crack closure. Fatigue and Fracture of Engineering Materials and Structures 20, 1453-1466.

    Google Scholar 

  • Gilbert, C.J. and Ritchie, R.O. (1998). On the quantification of bridging tractions during subcritical crack growth under monotonic and cyclic fatigue loading in a grain-bridging silicon carbide ceramic. Acta Materialia 46, 609-616.

    Article  Google Scholar 

  • Harrison, G.F. and Winstone, M.R. (1996). Aeroengine applications of advanced high temperature materials, in Mechanical Behaviour of Materials at High Temperatures, (Edited by C. Moura Branco, R.O. Ritchie and V. Sklenicka), Kluwer Academic Publishers, Dordrecht, The Netherlands pp. 309-325.

    Google Scholar 

  • Hay, J.C. and White, K.W. (1993). Grain-bridging mechanisms in monolithic alumina and spinel. Journal of the American Ceramic Society 76, 1849-1854.

    Article  Google Scholar 

  • Hong, M.-H., McNaney, J.M. and Ritchie, R.O. (1998). Fatigue-crack growth of small cracks in a directionally-solidified nickel aluminide with molybdenum additions. Scripta Materialia 38, 245-251.

    Article  Google Scholar 

  • Irwin, G.R. (1958). Fracture, in Handbuch der Physik, Springer-Verlag, Berlin, Germany 6, 551.

    Google Scholar 

  • Johnson, H.H. and Paris, P.C. (1967). Subcritical flaw growth. Engineering Fracture Mechanics 1, 3.

    Article  Google Scholar 

  • Kishimoto, H., Ueno, A. and Kawamoto, H. (1995). Crack propagation behavior and mechanism of a sintered silicon nitride under cyclic load, in Cyclic Fatigue in Ceramics, (Edited by H. Kishimoto, T. Hoshide, and N. Okabe), Elsevier, London, 101-122.

    Google Scholar 

  • Kochendörfer, R. (1996). CMC processing routes for high temperature applications, in Mechanical Behaviour of Materials at High Temperatures, (Edited by C. Moura Branco, R.O. Ritchie and V. Sklenicka), Kluwer Academic Publishers, Dordrecht, The Netherlands pp. 635-682.

    Google Scholar 

  • Laird, C. and Smith, G.C. (1962). Crack propagation in high stress fatigue. Philosophical Magazine 8, 847-857.

    ADS  Google Scholar 

  • Lawn, B.R. (1993). Fracture of Brittle Solids, 2n edn., Cambridge University Press, Cambridge.

    Google Scholar 

  • Lathabai, S., Rödel, J. and Lawn, B.R. (1991). Cyclic fatigue behavior of an alumina ceramic with crack-resistance characteristics. Journal of the American Ceramic Society 74, 1340-1348.

    Article  Google Scholar 

  • Liu, C.T., Taub, A.I., Stoloff, N.S. and Koch, C.C., (eds), (1989). High-Temperature ordered intermetallic alloys II, MRS Symp. Proc., 133, Materials Research Society, Pittsburgh.

    Google Scholar 

  • Liu, S.-Y. and Chen, I.-W. (1991). Fatigue of yttria-stabilized zirconia — I. Fatigue damage, fracture origins and lifetime prediction. Journal of the American Ceramic Society 74, 1197-1205.

    Article  Google Scholar 

  • Mai, Y.-W. and Lawn, B.R. (1987). Crack-interface grain bridging as a fracture resistance mechanism in ceramics — II: Theoretical fracture mechanics model. Journal of the American Ceramic Society 70, 289-294.

    Article  Google Scholar 

  • Miller, K.J. and de los Rios, E.R., (eds), (1992). Short Fatigue Cracks, Mech. Eng. Publ. Ltd., London.

    Google Scholar 

  • Murugesh, L., Venkateswara Rao, K.T. and Ritchie, R.O. (1993). Crack growth in a ductile-phase-toughened Nb/Nb3Al in situ intermetallic composite under monotonic and cyclic loading. Scripta Metallurgica et Materialia 29, 1107-1112.

    Article  Google Scholar 

  • McClintock, F.A. (1967). Discussion to C. Laird's paper 'The influence of metallurgical microstructure on the mechanisms of fatigue crack propagation, in Fatigue Crack Propagation, ASTM STP 415, Am. Soc. Test. Matls., Philadelphia, 170-174.

    Google Scholar 

  • Neumann, P. (1969). Coarse slip model in fatigue. Acta Metallurgica 17, 1219-1225.

    Article  Google Scholar 

  • Paris, P.C., Gomez, M.P. and Anderson, W.E. (1961). A rational analytic theory of fatigue. The Trend in Engineering 13, 9-14.

    Google Scholar 

  • Paris, P.C. and Erdogan, F. (1963). A critical analysis of crack propagation laws. Journal of Basic Engineering, Trans. ASME, Ser. D, 85, 528-534.

  • Pelloux, R.M.N. (1969). Mechanisms of formation of ductile fatigue striations. Transactions of ASM 62, 281-285.

    Google Scholar 

  • Pope, D.P., Liu, C.T. and Whang, S.H., (eds), (1995). High Temperature Intermetallics — Parts 1 & 2, Elsevier, Lausanne, Switzerland.

    Google Scholar 

  • Ritchie, R.O. (1977). Influence of microstructure on near-threshold fatigue crack propagation in ultra-high strength steel. Metal Science 11, 368-381.

    Article  Google Scholar 

  • Ritchie, R.O. (1979). Near-threshold fatigue crack propagation in steels. International Metals Reviews 20, 205-230.

    Google Scholar 

  • Ritchie, R.O. (1988). Mechanisms of fatigue crack propagation in metals, ceramics and composites: Role of crack-tip shielding. Materials Science and Engineering A103, 15-28.

    Article  Google Scholar 

  • Ritchie, R.O. (1996). Fatigue and fracture of pyrolytic carbon: A damage-tolerant approach to structural integrity and life prediction in ‘ceramic’ heart-valve prostheses. Journal of Heart Valve Disease 5suppl. 1, S9-31.

    Google Scholar 

  • Ritchie, R.O. and Knott, J.F. (1973). Mechanisms of fatigue crack growth in low alloy steel. Acta Metallurgica 21, 639-650.

    Article  Google Scholar 

  • Ritchie, R.O. and Lankford, J. (eds), (1986). Small Fatigue Cracks, TMS-AIME, Warrendale.

    Google Scholar 

  • Ritchie, R.O. and Dauskardt, R.H. (1991). Cyclic fatigue of ceramics: A fracture mechanics approach to subcritical crack growth and life prediction, Journal of the Ceramic Society of Japan 99, 1047-1062.

    Google Scholar 

  • Rouby, D. and Reynaud, P. (1993). Fatigue behavior related to interface modification during load cycling in ceramic-matrix reinforced composites. Composites Science and Technology 48, 109-118.

    Article  Google Scholar 

  • Soboyejo, W.O., Srivatsan, T.S. and Ritchie, R.O., (eds), (1995a). Fatigue and Fracture of Ordered Intermetallic Materials II, TMS, Warrendale.

    Google Scholar 

  • Soboyejo, W.O., Ye, F., Chen, L.-C., Bahtishi, N., Schwartz, S. and Lederich, R.L. (1995b). Effects of reinforcement architecture on the fatigue and fracture behavior of MoSi2/Nb composites, in Fatigue and Fracture of Ordered Intermetallic Materials II, (Edited by W.O. Soboyejo, T.S. Srivatsan and R.O. Ritchie) TMS, Warrendale, 359-390.

    Google Scholar 

  • Steffen, A.A., Dauskardt, R.H. and Ritchie, R.O. (1991). Cyclic fatigue life and crack-growth behavior of microstructurally-small cracks in magnesia-partially-stabilized zirconia ceramics. Journal of the American Ceramic Society 74, 1259-1268.

    Article  Google Scholar 

  • Stoloff, N.S. (1996). Fatigue and fracture of high temperature intermetallics, in Processing and Design Issues in High-Temperature Materials, (Edited by N.S. Stoloff and R.H. Jones) TMS, Warrendale, 195-207.

    Google Scholar 

  • Suresh, S. (1991). Fatigue of Materials, Cambridge University Press, Cambridge.

    Google Scholar 

  • Suresh, S. and Ritchie, R.O. (1984). Near-threshold fatigue crack propagation: A perspective on the role of crack closure, in Fatigue Crack Growth Threshold Concepts, (Edited by D.L. Davidson and S. Suresh), TMS-AIME, Warrendale, 227-261.

    Google Scholar 

  • Van Stone, R.H. (1988). Residual life prediction methods for gas turbine components. Materials Science and Engineering A103, 49-61.

    Article  Google Scholar 

  • Venkateswara Rao, K.T., Odette, G.R. and Ritchie, R.O. (1992a). On the contrasting role of ductile-phase reinforcements in the fracture toughness and fatigue-crack propagation resistance of TiNb/γ-TiAl intermetallicmatrix composites. Acta Metallurgica et Materialia 40, 353-361.

    Article  Google Scholar 

  • Venkateswara Rao, K.T., Odette, G.R. and Ritchie, R.O. (1994). Ductile-reinforcement toughening in γ-TiAl intermetallic-matrix composites under monotonic and cyclic loading: Effect on fracture toughness and fatigue-crack propagation resistance. Acta Metallurgica et Materialia 42, 893-911.

    Article  Google Scholar 

  • Venkateswara Rao, K.T., Soboyejo, W.O. and Ritchie, R.O. (1992b). Ductile-phase toughening and fatigue-crack-growth in Nb-reinforced molybdenum disilicide intermetallic composites. Metallurgical Transactions A23, 2249-2257.

    ADS  Google Scholar 

  • Wöhler, A. (1860). Versuche über die festiykeit eisenbahnwagenuchsen. Zeitschrift für Bauwesen 10.

  • Yoder, G.R., Cooley, Y.A. and Crooker, T.W. (1979). Quantitative analysis of microstructural effects on fatigue crack growth in Widmanstätten Ti-6A1-4V and Ti-8A1-1Mo-1V. Engineering Fracture Mechanics 11, 805-816.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritchie, R. Mechanisms of fatigue-crack propagation in ductile and brittle solids. International Journal of Fracture 100, 55–83 (1999). https://doi.org/10.1023/A:1018655917051

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018655917051

Navigation