Skip to main content
Log in

Modelling fracture in laminated architectural glass subject to low velocity impact

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Standard finite element wave propagation codes are useful for determining stresses caused by colliding bodies; however, their applicability to brittle materials is limited because an accurate treatment of the fracture process is difficult to model. This paper presents a method that allows traditional wave propagation codes to model low velocity, small missile impact in laminated architectural glass such as that which occurs in severe windstorms. Specifically, a method is developed to model typical fractures that occur when laminated glass is impacted by windborne debris. Computational results of concern to architectural glazing designers are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. HUNTSBERGER, J. Adhesion 13 (1981) 107.

    CAS  Google Scholar 

  2. W. L. BEASON, G. E. MEYERS and R. W. JAMES, J. Struct. Eng. 110 (1984) 2843.

    Article  Google Scholar 

  3. R. G. WHIRLEY, B. E. ENGLEMANN and J. O. HALQUIST, “DYNA2D, a nonlinear, explicit, two-dimensional finite element code for solid mechanics,” User manual, Lawrence Livermore National Laboratory Report, UCRL-MA-110630, 1992.

  4. Y. C. FUNG, “Foundations of solid mechanics” (Prentice-Hall, Englewood Cliffs, NJ, 1965) p. 20.

    Google Scholar 

  5. F. W. FLOCKER and L. R. DHARANI, Eng. Struct. accepted.

  6. C. G. KNIGHT, M. V. SWAIN and M. M. CHAUDHRI, J. Mater. Sci. 12 (1977) 1573.

    Article  Google Scholar 

  7. R. F. COOK and G. M. PHARR, J. Amer. Ceram. Soc. 73 (1990) 787.

    Article  CAS  Google Scholar 

  8. M. M. CHAUDHRI and S. M. WALLEY, Phil. Mag. A 37 (1978) 153.

    Google Scholar 

  9. M. V. SWAIN and J. T. HAGAN, J. Phys. D: Appl. Phys. 9 (1976) 2201.

    Article  CAS  Google Scholar 

  10. B. LAWN and R. WILSHAW, J. Mater. Sci. 10 (1975) 1049.

    Article  Google Scholar 

  11. D. M. MARSH, Proc. Roy. Soc. London, A 279 (1961) 420.

    Google Scholar 

  12. Idem., ibid. 282 (1964) 33.

    Google Scholar 

  13. S. C. HUNTER, J. Mech. Phys. Solids 5 (1957) 162.

    Article  Google Scholar 

  14. S. P. TIMOSHENKO and J. N. GOODIER “Theory of elasticity“ 3rd edn (McGraw-Hill, New York, 1970) pp. 409–20.

    Google Scholar 

  15. A. BALL and H. W. MCKENZIE, J. de Physique IV 4 (1994) C8–783.

    Google Scholar 

  16. J. PERSON, K. BREDER and D. J. ROWCLIFFE, J. Mater. Sci. 28 (1993) 6484.

    Article  Google Scholar 

  17. B. R. LAWN, T. R. WILSHAW and N. E. W. HARTLEY, Int. J. Fract. 10 (1974) 1.

    Article  Google Scholar 

  18. M. F. KANNINEN and C. H. POPELAR “Advanced fracture mechanics” (Oxford University Press, New York, 1985) pp. 409–20.

    Google Scholar 

  19. S. SANTHANAM and M. C. SHAW, J. Amer. Ceram. Soc. 73 (1990) 2922.

    Article  Google Scholar 

  20. W. GOLDSMITH “Impact: The theory and physical behaviour of colliding solids” (Edward Arnold, London, 1960) pp. 82–137.

    Google Scholar 

  21. L. B. GRESZCZUK in “Impact dynamics” edited by Z. A. Zukas, T. Nicholas, H. Swift, and L. B. Greszczuk (John Wiley & Sons, New York, 1982) pp. 55–94.

    Google Scholar 

  22. A. E. H. LOVE “A treatise on the mathematical theory of elasticity” 4th edn (Dover, New York 1994) p. 198.

    Google Scholar 

  23. F. C. FRANK and B. R. LAWN, Proc. Roy. Soc. London A 299 (1967) 291.

    Article  Google Scholar 

  24. B. R. LAWN and S. M. WIEDERHORN, J. Amer. Ceram. Soc. 58 (1975) 428.

    Article  CAS  Google Scholar 

  25. B. LAWN “Fracture of brittle solids” 2nd edn (Cambridge University Press, New York, 1993) p. 286.

    Google Scholar 

  26. M. M. CHAUDHRI and C. LIANGYI, J. Mater. Sci. 24 (1989) 3441.

    Article  CAS  Google Scholar 

  27. S. M. WIEDERHORN and B. R. LAWN, J. Amer. Ceram. Soc. 60 (1977) 451.

    Article  CAS  Google Scholar 

  28. M. M. CHAUDHRI and C. R. KURKJIAN, ibid. 69 (1986) 404.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

FLOCKER, F.W., DHARANI, L.R. Modelling fracture in laminated architectural glass subject to low velocity impact. Journal of Materials Science 32, 2587–2594 (1997). https://doi.org/10.1023/A:1018698900942

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018698900942

Keywords

Navigation