Skip to main content
Log in

Adhesion-Mediated Signaling in the Regulation of Mammary Epithelial Cell Survival

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Tissue architecture in multicellular organismsis maintained through adhesive interactions betweencells and their neighbors, and between cells and theunderlying extracellular matrix. These interactions are important in the dynamic regulation oftissue organization as well as the control of cellproliferation, differentiation and apoptosis. Theultimate goal of this regulation is to promote cellgrowth and differentiation only when the cell is inthe correct location, and to delete cells that havebecome displaced from their proper environment. Ittherefore plays an important role in development andtissue remodeling. In this review we consider themolecular mechanisms by which cell-matrix interactionscontribute to cell survival, and discuss their role inmammary gland development and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. O. Hynes (1992). Integrins—versatility, modulation, and signaling in cell-adhesion. Cell 69:11–25.

    Google Scholar 

  2. J. E. Meredith, B. Fazeli, and M. A. Schwartz (1993). The extracellular-matrix as a cell-survival factor. Mol. Biol. Cell. 4:953–961.

    Google Scholar 

  3. S. M. Frisch and H. Francis (1994). Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124: 619–626.

    Google Scholar 

  4. A. Khwaja, P. Rodriguez Viciana, S. Wennstrom, P.H. Warne, and J. Downward (1997). Matrix adhesion and Ras transformation both activate a phosphoinositide 3–OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J. 16: 2783–2793.

    Google Scholar 

  5. S. Pullan, J. Wilson, A. Metcalfe, G. M. Edwards, N. Goberdhan, J. Tilly, J. A. Hickman, C. Dive, and C. H. Streuli (1996). Requirement of basement membrane for the suppression of programmed cell death in mammary epithelium. J. Cell Sci. 109:631–642.

    Google Scholar 

  6. N. Boudreau, C. J. Sympson, Z. Werb, and M. J. Bissell (1995). Suppression of ice and apoptosis in mammary epithelial cells by extracellular matrix. Science 267:891–893.

    Google Scholar 

  7. F. Re, A. Zanetti, M. Sironi, N. Polentarutti, L. Lanfrancone, E. Dejana, and F. Colotta (1994). Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial-cells. J. Cell Biol. 127:537–546.

    Google Scholar 

  8. Z. H. Zhang, K. Vuori, J. C. Reed, and E. Ruoslahti (1995). The alpha-5–beta-1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc. Natl. Acad. Sci. U.S.A. 92:6161–6165.

    Google Scholar 

  9. J. E. Hungerford, M. T. Compton, M. L. Matter, B. G. Hoffstrom, and C. A. Otey (1996). Inhibition of pp125FAK in cultured fibroblasts results in apoptosis. J. Cell Biol. 135:1383–1390.

    Google Scholar 

  10. P. H. Vachon, F. Loechel, H. Xu, U. M. Wewer, and E. Engvall (1996). Merosin and laminin in myogenesis; Specific requirement for merosin in myotube stability and survival. J. Cell Biol. 134:1483–1497.

    Google Scholar 

  11. Z. H. Zhang, A. O. Morla, K. Vuori, J. S. Bauer, R. L. Juliano, and E. Ruoslahti (1993). The alpha-V-beta-1–integrin functions as a fibronectin receptor but does not support fibronectin matrix assembly and cell-migration on fibronectin. J. Cell Biol. 122: 235–242.

    Google Scholar 

  12. A. M. P. Montgomery, R. A. Reisfeld, and D. A. Cheresh (1994). Integrin-alpha(V)beta(3) rescues melanoma-cells from apoptosis in 3–dimensional dermal collagen. Proc. Natl. Acad. Sci. U.S.A. 91:8856–8860.

    Google Scholar 

  13. P. C. Brooks, A. M. P. Montgomery, M. Rosenfeld, R. A. Reisfeld, T. H. Hu, G. Klier, and D. A. Cheresh (1994). Integrin alpha(V)beta(3) antagonists promote tumor-regression by inducing apoptosis of angiogenic blood-vessels. Cell 79: 1157–1164.

    Google Scholar 

  14. S. Miyamoto, H. Teramoto, J. S. Gutkind, and K. M. Yamada (1996). Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: Roles of integrin aggregation and occupancy of receptors. J. Cell Biol. 135:1633–1642.

    Google Scholar 

  15. G. E. Plopper, H. P. McNamee, L. E. Dike, K. Bojanowski, and D. E. Ingber (1995). Convergence of integrin and growth-factor receptor signaling pathways within the focal adhesion complex. Mol. Biol. Cell. 6:1349–1365.

    Google Scholar 

  16. M. A. Schwartz, M. D. Schaller, and M. H. Ginsberg (1995). Integrins—emerging paradigms of signal-transduction. Ann. Rev. Cell Dev. Biol. 11:549–599.

    Google Scholar 

  17. C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber (1997). Geometric control of cell life and death. Science 276:1425–1428.

    Google Scholar 

  18. S. P. Massia and J. A. Hubbell (1991). An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3–mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J. Cell Biol. 114:1089–1100.

    Google Scholar 

  19. S. Miyamoto, H. Teramoto, O. A. Coso, J. S. Gutkind, P. D. Burbelo, S. K. Akiyama, and K. M. Yamada (1995). Integrin function—molecular hierarchies of cytoskeletal and signaling molecules. J. Cell Biol. 131:791–805.

    Google Scholar 

  20. A. E. Aplin, A. Howe, S. K. Alhari, and R. L. Juliano (1998). Signal transduction and signal modulation by cell adhesion receptors: The role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmalogical Rev. 50:197–263.

    Google Scholar 

  21. P. A. Maher (1993). Activation of phosphotyrosine phosphatase activity by reduction of cell-substrate adhesion. Proc. Natl. Acad. Sci. U.S.A. 90:11177–11181.

    Google Scholar 

  22. M. D. Schaller, C. A. Borgman, B. S. Cobb, R. R. Vines, A. B. Reynolds, and J. T. Parsons (1992). Pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc. Natl. Acad. Sci. U.S.A. 89:5192–5196.

    Google Scholar 

  23. S. K. Hanks, M. B. Calalb, M. C. Harper, and S. K. Patel (1992). Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibronectin. Proc. Natl. Acad. Sci. U.S.A. 89:8487–8491.

    Google Scholar 

  24. S. K. Hanks and T. R. Polte (1997). Signaling through focal adhesion kinase. Bioessays 19:137–145.

    Google Scholar 

  25. J. T. Parsons (1996). Integrin-mediated signaling: Regulation by protein tyrosine kinases and small GTP-binding proteins. Curr. Opin. Cell Biol. 8:146–152.

    Google Scholar 

  26. H. C. Chen and J. L. Guan (1994). Association of focal adhesion kinase with its potential substrate phosphatidylinositol 3–kinase. Proc. Natl. Acad. Sci. U.S.A. 91:10148–10152.

    Google Scholar 

  27. B. S. Cobb, M. D. Schaller, T. H. Leu, and J. T. Parsons (1994). Stable association of pp60Src and pp59Fyn with the focal adhesion-associated protein-tyrosine kinase, pp125FAK. Mol. Cell. Biol. 14:147–155.

    Google Scholar 

  28. J. D. Hildebrand, M. D. Schaller, and J. T. Parsons (1995). Paxillin, a tyrosine-phosphorylated focal adhesion-associated protein binds to the carboxyl-terminal domain of focal adhesion kinase. Mol. Biol. Cell. 6:637–647.

    Google Scholar 

  29. S. M. Frisch, K. Vuori, E. Ruoslahti, and P. Y. Chanhui (1996). Control of adhesion-dependent cell-survival by focal adhesion kinase. J. Cell Biol. 134:793–799.

    Google Scholar 

  30. L. V. Owens, L. Xu, R. J. Craven, G. A. Dent, T. M. Weiner, L. Kornberg, E. T. Liu, and W. G. Cance (1995). Overexpression of the focal adhesion kinase pp125FAK in invasive human tumors. Cancer Res. 55:2752–2755.

    Google Scholar 

  31. L. H. Xu, L. V. Owens, G. C. Sturge, X. H. Yang, E. T. Liu, R. J. Craven, and W. G. Cance (1996). Attenuation of the expression of the focal adhesion kinase induces apoptosis in tumor-cells. Cell Growth Differ. 7:413–418.

    Google Scholar 

  32. A. P. Gilmore and L. H. Romer (1996). Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Mol. Biol. Cell. 7:1209–1224.

    Google Scholar 

  33. D. H. Crouch, V. J. Fincham, and M. C. Frame (1996). Targeted proteolysis of the focal adhesion kinase pp125FAK during c-MYC-induced apoptosis is suppressed by integrin signaling. Oncogene 12:2689–2696.

    Google Scholar 

  34. L. P. Wen, J. A. Fahrni, S. Troie, J. L. Guan, K. Orth, and G. D. Rosen (1997). Cleavage of focal adhesion kinase by caspases during apoptosis. J. Biol. Chem. 272:26056–26061.

    Google Scholar 

  35. N. Farrelly, Y.-J. Lee, J. Oliver, C. Dive, and C. H. Streuli (1999). Extracellular matrix regulates apoptosis in mammary epithelium through a control on insulin signaling. J. Cell Biol. 144:1337–1348.

    Google Scholar 

  36. A. Toker and L. C. Cantley (1997). Signaling through the lipid products of phosphoinositide-3–OH kinase. Nature 387: 673–676.

    Google Scholar 

  37. D. R. Alessi, S. R. James, C. P. Downes, A. B. Holmes, P. R. Gaffney, C. B. Reese, and P. Cohen (1997). Characterization of a 3–phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr. Biol. 7: 261–269.

    Google Scholar 

  38. M. Delcommenne, T. Tan, V. Gray, L. Rue, J. Woodgett, and S. Dedhar (1998). Phosphoinositide-3–OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc. Natl. Acad. Sci. U.S.A. 95:11211–11216.

    Google Scholar 

  39. J. P. Zha, H. Harada, E. Yang, J. Jockel, and S. J. Korsmeyer (1996). Serine phosphorylation of death agonist bad in response to survival factor results in binding to 14–3–3 not Bgl-X(L). Cell. 87:619–628.

    Google Scholar 

  40. M. Parrizas, A. R. Saltiel, and D. LeRoith (1997). Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3′-kinase and mitogen-activated protein kinase pathways. J. Biol. Chem. 272:154–161.

    Google Scholar 

  41. Z. Songyang, D. Baltimore, L. C. Cantley, D. R. Kaplan, and T. F. Franke (1997). Interleukin 3–dependent survival by the Akt protein kinase. Proc. Natl. Acad. Sci. U.S.A. 94:11345–11350.

    Google Scholar 

  42. M. Pap and G. M. Cooper (1998). Role of glycogen synthase kinase-3 in the phosphatidylinositol 3–Kinase/Akt cell survival pathway. J. Biol. Chem. 273:19929–19932.

    Google Scholar 

  43. M. H. Cardone, N. Roy, H. R. Stennicke, G. S. Salvesen, T. F. Franke, E. Stanbridge, S. Frisch, and J. C. Reed (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321.

    Google Scholar 

  44. A. P. Gilmore and C. H. Streuli (1998). Cell adhesion to ECM regulates intracellular localization of Bax and apoptosis. Mol. Biol. Cell. 9:381a.

    Google Scholar 

  45. M. Schneller, K. Vuori, and E. Ruoslahti (1997). Alpha v beta 3 integrin associates with activated insulin and PDGF beta receptors and potentiates the biological activity of PDGF. EMBO J. 16:5600–5607.

    Google Scholar 

  46. K. Vuori and E. Ruoslahti (1994). Association of insulin-receptor substrate-1 with integrins. Science 266:1576–1578.

    Google Scholar 

  47. O. Lefebvre, C. Wolf, J. M. Limacher, P. Hutin, C. Wendling, M. Lemeur, P. Basset, and M. C. Rio (1992). The breast-cancer associated stromelysin-3 gene is expressed during mouse mammary-gland apoptosis. J. Cell Biol. 119:997–1002.

    Google Scholar 

  48. R. S. Talhouk, M. J. Bissell, and Z. Werb (1992). Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J. Cell Biol. 118:1271–1282.

    Google Scholar 

  49. F. Li, R. Strange, R. R. Friis, V. Djonov, H. J. Altermatt, S. Saurer, H. Niemann, and A.C. Andres (1994). Expression of stromelysin-1 and TIMP-1 in the involuting mammary gland and in early invasive tumors of the mouse. Int. J. Cancer 59:560–568.

    Google Scholar 

  50. L.R. Lund, J. Romer, N. Thomasset, H. Solberg, C. Pyke, M. J. Bissell, K. Dano, and Z. Werb (1996). Two distinct phases of apoptosis in mammary gland involution: Proteinase-independent and-dependent pathways. Development 122: 181–193.

    Google Scholar 

  51. A. Martinez Hernandez, L. M. Fink, and G. B. Pierce (1976). Removal of basement membrane in the involuting breast. Lab. Invest. 34:455–462.

    Google Scholar 

  52. C. J. Sympson, R. S. Talhouk, C. M. Alexander, J. R. Chin, S. M. Clift, M. J. Bissell, and Z. Werb (1994). Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J. Cell Biol. 125:681–693.

    Google Scholar 

  53. C. M. Alexander, E. W. Howard, M. J. Bissell, and Z. Werb (1996). Rescue of mammary epithelial cell apoptosis and entactin degradation by a tissue inhibitor of metalloproteinases-1 transgene. J. Cell Biol. 135:1669–1677.

    Google Scholar 

  54. N. I. Walker, R. E. Bennett, and J. F. R. Kerr (1989). Cell-death by apoptosis during involution of the lactating breast in mice and rats. Am. J. Anat. 185:19–32.

    Google Scholar 

  55. C. Vallan, Z. Feng, and R. Jaggi (1996). Morphological changes during programmed cell death in the involuting mouse mammary gland. The Mammary Gland Database, http://alice.dcrt.-nih.gov/~mammary/index.html

  56. J. Oliver, M. O'Hare, and C. H. Streuli (1998). Integrin-mediated control of apoptosis in mammary gland. Mol. Biol. Cell. 9:303a.

    Google Scholar 

  57. R. H. W. Wetzels, H. C. M. Robben, I. M. Leigh, H. E. Schaafsma, G. P. Vooijs, and F. C. S. Ramaekers (1991). Distribution patterns of type-vii collagen in normal and malignant human tissues. Am. J. Path. 139:451–459.

    Google Scholar 

  58. G. K. Koukoulis, I. Virtanen, M. Korhonen, L. Laitinen, V. Quaranta, and V. E. Gould (1991). Immunohistoche mical localization of integrins in the normal, hyperplastic, and neoplastic breast. Correlations with their functions as receptors and cell adhesion molecules. Am. J. Path. 139:787–799.

    Google Scholar 

  59. K. Friedrichs, P. Ruiz, F. Franke, I. Gille, H. J. Terpe, and B. A. Imhof (1995). High expression level of alpha 6 integrin in human breast carcinoma is correlated with reduced survival. Cancer Res. 55:901–906.

    Google Scholar 

  60. U. M. Wewer, L. M. Shaw, R. Albrechtsen, and A. M. Mercurio (1997). The integrin alpha 6 beta 1 promotes the survival of metastatic human breast carcinoma cells in mice. Am. J. Path. 151:1191–1198.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Streuli, C.H., Gilmore, A.P. Adhesion-Mediated Signaling in the Regulation of Mammary Epithelial Cell Survival. J Mammary Gland Biol Neoplasia 4, 183–191 (1999). https://doi.org/10.1023/A:1018729308878

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018729308878

Navigation