Skip to main content
Log in

Temporal representation and reasoning in artificial intelligence: Issues and approaches

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

Time is one of the most relevant topics in AI. It plays a major role in several areas, ranging from logical foundations to applications of knowledge‐based systems. In this paper, we survey a wide range of research in temporal representation and reasoning, without committing ourselves to the point of view of any specific application. The organization of the paper follows the commonly recognized division of the field in two main subfields: reasoning about actions and change, and reasoning about temporal constraints. We give an overview of the basic issues, approaches, and results in these two areas, and outline relevant recent developments. Furthermore, we briefly analyze the major emerging trends in temporal representation and reasoning as well as the relationships with other well‐established areas, such as temporal databases and logic programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Alferes, R. Li and L. Pereira, Concurrent actions and changes in the situation calculus, in: Proc. of IBERAMIA-94(1994) pp. 93-104.

  2. J.F. Allen, Maintaining knowledge about temporal intervals, Communications of the ACM 26(11) (1983) 832-843.

    Article  MATH  Google Scholar 

  3. J.F. Allen, Toward a general theory of action and time, Artificial Intelligence 23 (1984) 123-154.

    Article  MATH  Google Scholar 

  4. J.F. Allen and G. Ferguson, Actions and events in interval temporal logic, Journal of Logic and Computation 4(5) (1994) 531-580.

    MATH  MathSciNet  Google Scholar 

  5. F. Bacchus, J.Y. Halpern and H.J. Levesque, Reasoning about noisy sensors in the Situation Calculus, in: Proc. of 14th International Joint Conference on Artificial Intelligence (IJCAI), Montréal, Québec (Morgan Kaufmann, San Mateo, CA, 1995) pp. 1933-1940.

    Google Scholar 

  6. F. Bacchus and F. Kabanza, Using temporal logic to control search in a forward chaining planner, in: New Directions in AI Planning, eds. M. Ghallab and A. Milano (IOS Press, 1996) pp. 141-153.

  7. F. Bacchus and F. Kabanza, Planning for temporally extended goals, in [52] (1998) pp. 5-27.

  8. F. Bacchus, J. Tenenberg and J.A. Koomen, A non-reified temporal logic, Artificial Intelligence, 52 (1991) 87-108.

    Article  MATH  MathSciNet  Google Scholar 

  9. A.B. Baker, A simple solution to the yale shooting problem, in: Proc. of the 1st International Conference on Principles of Knowledge Representation and Reasoning (KR)(Morgan Kaufmann, San Mateo, CA, 1989) pp. 11-20.

    Google Scholar 

  10. A.B. Baker, Nonmonotonic reasoning in the framework of situation calculus, Artificial Intelligence, 49 (1991) 5-23.

    Article  MATH  MathSciNet  Google Scholar 

  11. A.B. Baker and Y. Shoham, Nonmonotonic temporal reasoning, in: Handbook of Logic in Arti-ficial Intelligence and Logic Programming, eds. D. Gabbay, C. Hogger and J. Robinson (Oxford University Press, Oxford, 1995).

    Google Scholar 

  12. C. Baral and M. Gelfond, Representing concurrent actions in extended logic programming, in: Proc. of 13th International Joint Conference on Artificial Intelligence (IJCAI), Chambéry, France (Morgan Kaufmann, San Mateo, CA, 1993) pp. 866-871.

    Google Scholar 

  13. C.Baral and M. Gelfond, Reasoning about effects of concurrent actions, in [155] (1997) pp. 85-117.

  14. C. Baral, M. Gelfond and A. Provetti, Representing actions: laws, observations and hypotheses, in [155] (1997) pp. 201-243.

  15. M. Barbeau, F. Kabanza and R. St-Denis, Synthesizing plant controllers using real-time goals, in: Proc. of 14th International Joint Conference on Artificial Intelligence (IJCAI), Montréal, Québec (Morgan Kaufmann, San Mateo, CA, 1995) pp. 791-798.

    Google Scholar 

  16. M. Baudinet, J. Chomicki and P. Wolper, Chapter 13: Temporal deductive databases, in [230] (1993) pp. 294-320.

  17. P. van Beek, Approximation algorithms for temporal reasoning, in: Proc. of the 11th International Joint Conference on Artificial Intelligence (IJCAI), Detroit, MI (Morgan Kaufmann, San Mateo, CA, (1989) 1291-1296.

    Google Scholar 

  18. P. van Beek, Reasoning about qualitative temporal information, in: Proc. of the 8th National Conference of the American Association for Artificial Intelligence (AAAI)(AAAI Press/MIT Press, Cambridge, MA, 1990) 728-734.

    Google Scholar 

  19. P. van Beek, Reasoning about qualitative temporal information, Artificial Intelligence 58 (1992) 297-326.

    Article  MATH  MathSciNet  Google Scholar 

  20. P. van Beek and D.W. Manchak, The design and experimental analysis of algorithms for temporal reasoning, Journal of Artificial Intelligence Research 4 (1996) 1-18.

    Article  MATH  Google Scholar 

  21. P. van Beek and R. Cohen, Exact and approximate reasoning about temporal relations, Computational Intelligence 6 (1990) 132-144.

    Google Scholar 

  22. P. Belegrinos and M. Georgeff, A model of events and processes, in: Proc. of 12th International Joint Conference on Artificial Intelligence (IJCAI), Sydney, Australia (Morgan Kaufmann, San Mateo, CA, 1991) pp. 506-511. 96 L. Chittaro, A. Montanari / Temporal representation and reasoning in AI

    Google Scholar 

  23. K. van Belleghem, M. Denecker and D. De Schreye, Combining Situation Calculus and Event Calculus, Proc. of the 12th International Conference on Logic Programming (ICLP), Kanagawa, Japan (MIT Press, 1995) pp. 83-97.

  24. K. van Belleghem, M. Denecker and D. De Schreye, On the relation between Situation Calculus and Event Calculus, in [155] (1997) pp. 3-37.

  25. J. van Benthem, The Logic of Time, 2nd Edition (Kluwer Academic, 1991).

  26. J. van Benthem, Temporal Logic, in: Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 4, eds. D. Gabbay, C. Hogger and J. Robinson (Oxford University Press, Oxford, 1995) pp. 241-350.

    Google Scholar 

  27. J. van Benthem, Points on time, Electronic News Journal on Reasoning about Actions and Change 2 (1998) http://www.ida.liu.se/ext/etai/rac/notes/1998/03/.

  28. J. van Benthem, Temporal patterns and modal structure, The Logic Journal of IGPL 7(1) (1999).

  29. C. Bessière, A. Isli and G. Ligozat, Global consistency in interval algebra networks: tractable subclasses, in: Proc. of the 12th European Conference on Artificial Intelligence (ECAI), Budapest, Hungary (Wiley, New York, 1996) pp. 3-7.

    Google Scholar 

  30. M. Boddy, AAAI-92 Workshop report: implementing temporal reasoning, SIGART Bulletin 4(3) (1993) 15-16.

    Google Scholar 

  31. M. Boddy, Temporal reasoning for planning and scheduling, SIGART Bulletin 4(3) (1993) 17-20.

    Google Scholar 

  32. G. Brajnik and D. Clancy, Focusing qualitative simulation using temporal logic: theoretical foundations, in [52] (1998) pp. 59-86.

  33. V. Brusoni, L. Console, P. Terenziani and B. Pernici, Later: managing temporal information efficiently, IEEE Expert 12(4) (1997) 56-64.

    Article  Google Scholar 

  34. I. Cervesato, L. Chittaro and A. Montanari, A modal calculus of partially ordered events in a logic programming framework, in: Proc. of the 12th International Conference on Logic Programming (ICLP), Kanagawa, Japan (MIT Press, Cambridge, MA, 1995) pp. 299-313.

    Google Scholar 

  35. I. Cervesato, M. Franceschet and A. Montanari, A hierarchy of modal event calculi: expressiveness and complexity, in: Proc. of the 2nd International Conference on Temporal Logic (ICTL), Manchester, UK (Kluwer Academic, 1999, in press) pp. 75-89.

  36. I. Cervesato, M. Franceschet and A. Montanari, Modal event calculi with preconditions, in: Proc. of the 4th International Workshop on Temporal Representation and Reasoning (TIME), Daytona Beach, FL (IEEE Computer Society Press, Los Alamitos, CA, 1997) pp. 38-45.

    Google Scholar 

  37. I. Cervesato, M. Franceschet and A. Montanari, Event calculi with explicit quantifiers, in: Proc. of the 5th International Workshop on Temporal Representation and Reasoning (TIME), Sanibel Island, FL (IEEE Computer Society Press, Los Alamitos, CA, 1998) pp. 81-88.

    Google Scholar 

  38. I. Cervesato, M. Franceschet and A. Montanari, The Complexity of Model Checking in Modal Event Calculi with Quantifiers, Electronic Transactions on Artificial Intelligence 2(1-2) (1998) 1-23, http://www.ep.liu.se/ej/etai/1998/001/. Extended and revised version of I. Cervesato, M. Franceschet and A. Montanari, The complexity of model checking in modal event calculi with quantifiers, in: Proc. of the 6th International Conference on Principles of Knowledge Representation and Reasoning (KR), Trento, Italy (Morgan Kaufmann, San Mateo, CA, 1998) pp. 368-379.

    Google Scholar 

  39. I. Cervesato, M. Franceschet and A. Montanari, A guided tour through some extensions of the Event Calculus, Computational Intelligence 16(2) (2000) 307-347.

    Article  MathSciNet  Google Scholar 

  40. I. Cervesato and A. Montanari, A general modal framework for the event calculus and its skeptical and credulous variants, Journal of Logic Programming 38(2) (1999) 111-164. Extended and revised version of A. Montanari, L. Chittaro and I. Cervesato, A general modal framework for the event calculus and its skeptical and credulous variants, in: Proc. of the 12th European Conference on Artificial Intelligence (ECAI), Budapest, Hungary (Wiley, New York, 1996) pp. 33-37.

    Google Scholar 

  41. D. Chapman, Planning for conjunctive goals, Artificial Intelligence 32 (1987) 333-377.

    Article  MATH  MathSciNet  Google Scholar 

  42. P. Cheeseman, B. Kanefsky and W.M. Taylor, Where the really hard problems are, in: Proc. of 12th International Joint Conference on Artificial Intelligence (IJCAI), Sydney, Australia (Morgan Kaufmann, San Mateo, CA, 1991) pp. 331-337.

    Google Scholar 

  43. L. Chittaro and C. Combi, Temporal indeterminacy in deductive databases: an approach based on the event calculus, in: Proc. of 2nd International Workshop on Active, Real-time and Temporal Database Systems (ARTDB), Lecture Notes in Artificial Intelligence, Vol. 1553 (Springer, Berlin, 1998) pp. 212-227.

    Google Scholar 

  44. L. Chittaro and C. Combi, Reasoning about events with imprecise location and multiple granularities, in: Proc. of the 10th International Conference on Database and Expert Systems Applications (DEXA), Florence, Italy (Springer, Berlin, 1999) pp. 1006-1017.

    Google Scholar 

  45. L. Chittaro and C. Combi, Abstraction on clinical data sequences: an object-oriented data model and a query language based on the Event Calculus, Artificial Intelligence in Medicine Journal 17(3) (1999) 271-301.

    Article  Google Scholar 

  46. L. Chittaro, C. Combi, E. Cervesato, A. Cervesato, F. Antonini-Canterin, G.L. Nicolosi and D. Zanuttini, Specifying and representing temporal abstractions of clinical data by a query language based on the Event Calculus, in: Proc. of the 24th Annual Conference on Computers in Cardiology(IEEE Press, New York, 1997).

    Google Scholar 

  47. L. Chittaro and M. Dojat, Using a General Theory of Time and Change for Patient Monitoring: Experiment and Evaluation, in [55] (1997) pp. 435-452.

  48. L. Chittaro, H. Hamilton, S. Goodwin and A. Montanari (eds.) Proc. TIME-96: 3rd International Workshop on Temporal Representation and Reasoning(IEEE Computer Society Press, Los Alamitos, CA, 1996).

    Google Scholar 

  49. L. Chittaro and A. Montanari, Experimenting a temporal logic for executable specification in an engineering domain, in: Applications of Artificial Intelligence in Engineering VIII, eds. G. Rzevski, J. Pastor and R.A. Adey (Elsevier Applied Science, Amsterdam, 1993) pp. 185-202.

    Google Scholar 

  50. L. Chittaro and A. Montanari, Efficient temporal reasoning in the cached Event Calculus, Computational Intelligence 12(3) (1996) 359-382.

    MathSciNet  Google Scholar 

  51. L. Chittaro and A. Montanari, Trends in temporal representation and reasoning, The Knowledge Engineering Review 11(3) (1996) 281-288.

    MathSciNet  Google Scholar 

  52. L. Chittaro and A. Montanari (eds.), Special issue on temporal representation and reasoning, Annals of Mathematics and Artificial Intelligence 22(1-2) (1998).

  53. L. Chittaro, A. Montanari and A. Provetti, skeptical and credulous event calculi for supporting modal queries, in: Proc. of the 11th European Conference on Artificial Intelligence (ECAI), Amsterdam, The Netherlands (Wiley, New York, 1994) pp. 361-365.

    Google Scholar 

  54. E. Ciapessoni, E. Corsetti, A. Montanari and P. San Pietro, Embedding time granularity in a logical specification language for synchronous real-time systems, Science of Computer Programming 20(1-2) (1993) 141-171.

    Article  MATH  MathSciNet  Google Scholar 

  55. C. Combi and Y. Shahar (eds.), Special issue on time-oriented systems in medicine, Computers in Biology and Medicine 27(5) (1997).

  56. C. Combi and Y. Shahar, Temporal Reasoning and Temporal Data Maintenance in Medicine: Issues and Challenges, in [55] (1997) pp. 353-368.

  57. L. Console, D. Theseider Dupré and P. Torasso, On the relationship between abduction and deduction, Journal of Logic and Computation 1(5) (1991) 661-690.

    MATH  MathSciNet  Google Scholar 

  58. G.F. Cooper, The computational complexity of probabilistic inference using Bayesian belief networks, Artificial Intelligence 42 (1990) 393-405.

    Article  MATH  MathSciNet  Google Scholar 

  59. E. Corsetti, A. Montanari and E. Ratto, Dealing with different time granularities in formal speci-fications of real-time systems, The Journal of Real-Time Systems 3(2) (1991) 191-215.

    Article  Google Scholar 

  60. J. Crawford and D.W. Etherington, Formalizing reasoning about change: A qualitative reasoning approach, in: Proc. of the 10th National Conference of the American Association for Artificial Intelligence (AAAI)(AAAI Press/MIT Press, 1992) pp. 577-583.

  61. E. Davis, Representation of Commonsense Knowledge(Morgan Kaufmann, San Mateo, CA, 1990).

    Google Scholar 

  62. T. Dean and M. Boddy. Reasoning about partially ordered events, Artificial Intelligence 36 (1988) 375-399.

    Article  MATH  MathSciNet  Google Scholar 

  63. T. Dean and D.V. Mc Dermott, Temporal data base management, Artificial Intelligence 32 (1987) 1-55.

    Article  Google Scholar 

  64. R. Dechter, I. Meiri and J. Pearl, Temporal constraint networks, Artificial Intelligence 49 (1991) 61-95.

    Article  MATH  MathSciNet  Google Scholar 

  65. M. Denecker, L. Missiaen and M. Bruynooghe, Temporal reasoning with abductive event calculus, in: Proc. of the 10th European Conference on Artificial Intelligence (ECAI), Vienna, Austria (Wiley, New York, 1992).

    Google Scholar 

  66. Y. Deville and P. Van Hentenryck, An efficient arc consistency algorithm for a class of CSP problems, in: Proc. of 12th International Joint Conference on Artificial Intelligence (IJCAI), Sydney, Australia (Morgan Kaufmann, San Mateo, CA, 1991) pp. 325-330.

    Google Scholar 

  67. P. Doherty, Reasoning about action and change using occlusion, in: Proc. of the 11th European Conference on Artificial Intelligence, (ECAI) Amsterdam, The Netherlands (Wiley, New York, 1994) pp. 401-405.

    Google Scholar 

  68. P. Doherty and W. Lukaszewicz, Circumscribing features and fluents, in: Proc. of the 1st International Conference on Temporal Logics (ICTL), Lecture Notes in Artificial Intelligence, Vol. 827, Bonn, Germany (Springer, Berlin, 1994) pp. 82-100.

    Google Scholar 

  69. T. Drakengren and P. Jonsson, Maximal tractable subclasses of allen's interval algebra: preliminary report, in: Proc. of the 13th Conference of the American Association for Artificial Intelligence (AAAI), Portland, OR (AAAI Press/MIT Press, 1996) pp. 389-394.

  70. T. Drakengren and P. Jonsson, Twenty-one large tractable subclasses of Allen's Algebra, Artificial Intelligence 93 (1997) 297-319.

    Article  MATH  MathSciNet  Google Scholar 

  71. T. Drakengren and P. Jonsson, Eight maximal tractable subclasses of Allen's Algebra with metric time, Journal of Artificial Intelligence Research 7 (1997) 25-45.

    MATH  MathSciNet  Google Scholar 

  72. T. Drakengren and P. Jonsson, Towards a complete classification of tractability in Allen's Algebra, in: Proc. of 15th International Joint Conference on Artificial Intelligence (IJCAI), Nagoya, Japan (Morgan Kaufmann, San Mateo, CA, 1997) pp. 1466-1471.

    Google Scholar 

  73. M. Drummond, Situated control rules, in: Proc. of the 1st International Conference on Principles of Knowledge Representation and Reasoning (KR)(Morgan Kaufmann, San Mateo, CA, 1989) pp. 103-113.

    Google Scholar 

  74. B. Errico and L.C. Aiello, Agents in the situation calculus: an application to user modeling, in: Practical Reasoning, eds. D. Gabbay and H.J. Ohlbach, Lecture Notes in Artificial Intelligence, Vol. 1085 (Springer, Berlin, 1996) pp. 126-140.

    Google Scholar 

  75. K. Eshghi, Abductive planning with event calculus, in: Proc. of the 5th International Conference and Symposium on Logic Programming (ICSLP), Seattle, WA (MIT Press, 1988) pp. 562-579.

  76. K. Eshghi and R. Kowalski, Abduction through deduction, Technical Report, Department of Computing, Imperial College, University of London (1988).

  77. C. Evans, Negation-as-failure as an an approach to the Hanks and McDermott problem, in: Proc. of the 2nd International Symposium on Artificial Intelligence(1989).

  78. C. Evans, The macro-event calculus: Representing temporal granularity, in: Proc. PRICAI-90(1990).

  79. A. Farquhar, A Qualitative physics compiler, in: Proc. of the 12th Conference of the American Association for Artificial Intelligence (AAAI)(AAAI Press/MIT Press, 1994) pp. 1168-1174.

  80. R. Fikes and N. Nilsson, STRIPS: a new approach to the application of theorem proving to problem solving, Artificial Intelligence 2 (1971) 189-208.

    Article  MATH  Google Scholar 

  81. M. Finger and P. McBrien, Concurrency control for perceivedly instantaneous transactions in valid-time databases, in: Proc. of the 4th International Workshop on Temporal Representation and Reasoning (TIME), Daytona Beach, FL (IEEE Computer Society Press, Los Alamitos, CA, 1997) pp. 112-118.

    Google Scholar 

  82. M. Finger, An introduction to executable temporal logics, The Knowledge Engineering Review 11(1) (1996).

  83. K. Forbus, Qualitative process theory, Artificial Intelligence 24 (1984) 85-168.

    Article  Google Scholar 

  84. M. Franceschet and A. Montanari, A graph-theoretic approach to efficiently reasoning about partially ordered events in the event calculus, in: Proc. of the 6th International Workshop on Temporal Representation and Reasoning (TIME), Orlando, FL (IEEE Computer Society Press, Los Alamitos, CA, 1999) pp. 55-66.

    Google Scholar 

  85. M. Franceschet and A. Montanari, Pairing transitive closure and reduction to efficiently reason about partially ordered events, in: Proc. of the 3rd International Workshop on Nonmonotonic Reasoning, Action and Change (NRAC)(1999) pp. 79-86.

  86. E.C. Freuder, Synthesizing constraint expressions, Communications of the ACM 21(11) (1978) 958-966.

    Article  MATH  MathSciNet  Google Scholar 

  87. E.C. Freuder, A Sufficient condition for backtrack-free search, Journal of the ACM 29(1) (1982) 24-32.

    Article  MATH  MathSciNet  Google Scholar 

  88. A. Galton, Reified temporal theories and how to unreify them, in: Proc. of 12th International Joint Conference on Artificial Intelligence (IJCAI), Sydney, Australia (Morgan Kaufmann, San Mateo, CA, 1991) pp. 1177-1182.

    Google Scholar 

  89. A. Galton, An investigation of "non-intermingling" principles in temporal logic, Journal of Logic and Computation 6(2) (1996) 271-294.

    Article  MATH  MathSciNet  Google Scholar 

  90. M. Gelfond, Autoepistemic logic and formalization of common-sense reasoning, in: Proc. of the 2nd International Workshop on Non-Monotonic Reasoning, Lecture Notes in Artificial Intellegence, Vol. 346 (Springer, Berlin, 1989).

    Google Scholar 

  91. M. Gelfond and V. Lifschitz, The stable model semantics for logic programming, in: Proc. of the 5th International Conference and Symposium on Logic Programming (ICSLP), Seattle (MIT Press, Cambridge, MA, 1988).

    Google Scholar 

  92. M. Gelfond and V. Lifschitz, Representing actions in extended logic programs, in: Proc. of the Joint International Conference and Symposium on Logic Programming (ICSLP)(MIT Press, Cambridge, MA, 1992) pp. 559-573.

    Google Scholar 

  93. M. Gelfond and V. Lifschitz, Representing action and change by logic programs, Journal of Logic Programming 17(2-4) (1993) 301-322.

    Article  MATH  MathSciNet  Google Scholar 

  94. M. Gelfond, V. Lifschitz and A. Rabinov, What are the limitations of the situation calculus?, in: Automated Reasoning: Essays in Honor of Woody Bledsoe, ed. R. Boyer (Kluwer Academic, 1991).

  95. A. Gerevini and L. Schubert, Efficient algorithms for qualitative reasoning about time, Artificial Intelligence 74 (1995) 207-248.

    Article  MATH  MathSciNet  Google Scholar 

  96. M.L. Ginsberg, Counterfactuals, Artificial Intelligence 30(1) (1986) 35-79.

    Article  MATH  MathSciNet  Google Scholar 

  97. M. Ginsburg and D.E. Smith, Reasoning about action II: the qualification problem, Artificial Intelligence 35(3) (1988) 311-342.

    Article  MathSciNet  Google Scholar 

  98. P. Godefroid and F. Kabanza, An efficient reactive planner for synthesizing reactive plans, in: Proc. of the 9th National Conference of the American Association for Artificial Intelligence (AAAI)(AAAI Press/MIT Press, 1991) pp. 640-645.

  99. M.C. Golumbic, Reasoning about time, in: Mathematical Aspects of Artificial Intelligence, ed. F. Hoffman, Proc. of Symposia in Applied Mathematics, Vol. 55 (American Math. Society, Providence, RI, 1998) pp. 19-53.

    Google Scholar 

  100. M.C. Golumbic, H. Kaplan and R. Shamir, On the complexity of DNA physical mapping, Advances in Applied Mathematics 15 (1994) 251-261.

    Article  MATH  MathSciNet  Google Scholar 

  101. M.C. Golumbic and R. Shamir, Complexity and algorithms for reasoning about time: a graphtheoretic approach, Journal of ACM 40(5) (1993) 1108-1133.

    Article  MATH  MathSciNet  Google Scholar 

  102. H.W. Guesgen, F.D. Anger, G. Ligozat and R.V. Rodriguez (eds.), Special Issue on Spatial and Temporal Reasoning, Constraints 3(2-3) (1998).

  103. M. Gyssens, P. Jeavons and D. Cohen, Decomposing constraint satisfaction problems using database techniques, Artificial Intelligence 66(1) (1994) 57-89.

    Article  MATH  MathSciNet  Google Scholar 

  104. J. Gustafsson and P. Doherty, Embracing occlusion in specifying the indirect effects of actions, in: Proc. of the 5th International Conference on Principles of Knowledge Representation and Reasoning (KR)(Morgan Kaufmann, San Mateo, CA, 1996) pp. 87-98.

    Google Scholar 

  105. J. Gustafsson and L. Karlsson, Reasoning about actions in a multi-agent environment, Link¨oping Electronic Articles in Computer and Information Science, http://www.ep.liu.se/ea/cis/1997/014 (1997).

  106. A. Haas, The case for domain-specific frame axioms, in: The Frame Problem in Artificial Intelligence, ed. F. Brown (Morgan Kaufmann, San Mateo, CA, 1987) pp. 343-348.

    Google Scholar 

  107. P. Haddawy and S. Hanks, Utility models for goal-directed decision-theoretic planners, Technical Report 93-06-04, University of Washington (1993).

  108. P. Haddawy, Representing Plans under Uncertainty: A Logic of Time, Change, and Action, Lecture Notes in Artificial Intelligence, Vol. 770 (Springer, Berlin, 1994).

    Google Scholar 

  109. J.Y. Halpern and Y. Shoham, A propositional modal logic of time intervals, Journal of the ACM 38(4) (1991) 935-962.

    Article  MATH  MathSciNet  Google Scholar 

  110. S. Hanks and D. McDermott, Default reasoning, nonmonotonic logics, and the frame problem, in: Proc. of the 5th National Conference on Artificial Intelligence (AAAI), Philadelphia, PA (AAAI Press, Menlo Park, CA, 1986) pp. 328-333.

    Google Scholar 

  111. S. Hanks and D. McDermott, Nonmonotonic logics and temporal projection, Artificial Intelligence 33 (1987) 379-412.

    Article  MATH  MathSciNet  Google Scholar 

  112. B.A. Haugh, Simple causal minimizations for temporal persistence and projection, in: Proc. of the 6th National Conference of the American Association for Artificial Intelligence (AAAI)(AAAI Press, Menlo Park, CA, 1987) pp. 218-223.

    Google Scholar 

  113. P.J. Hayes, The second naive physics manifesto, in: Formal Theories of the Commonsense World, eds. J.R. Hobbs and R.C. Moore (Ablex, Norwood, NJ, 1985) pp. 1-36.

    Google Scholar 

  114. P.J. Hayes, Contribution to the panel debate on theory evaluation, Electronic Newsletter on Reasoning about Actions and Change, Issue 97009, http://www.ida.liu.se/ext/etai/actions/njl/97009 (1997).

  115. C.A.R. Hoare, Communicating Sequential Processes(Prentice-Hall, Englewood Cliffs, NJ, 1985).

    MATH  Google Scholar 

  116. S. H¨olldobler, Foundations of Equational Logic Programming, Lecture Notes in Artificial Intelligence, Vol. 353 (Springer, Berlin, 1989).

    Google Scholar 

  117. S. H¨olldobler, Situations, actions, and causality in the fluent calculus, Technical Report WV-97-01, Knowledge Representation and Reasoning Group, AI Institute, Department of Computer Science, Dresden University of Technology (1997).

  118. S. H¨olldobler and J. Schneeberger, A new deductive approach to planning, New Generation Computing 8 (1990) 225-244.

    Google Scholar 

  119. S. H¨olldobler and M. Thielscher, Actions and specificity, in: Proc. of the 10th International Conference on Logic Programming (ICLP)(MIT Press, Cambridge, MA, 1993) pp. 164-180.

    Google Scholar 

  120. S. H¨olldobler and M. Thielscher, Computing change and specificity with equational logic programs, Annals of Mathematics and Artificial Intelligence 14 (1995) 99-133.

    Article  MathSciNet  Google Scholar 

  121. F. Kabanza, Synthesis of reactive plans for multi-path environments, in: Proc. of the 8th National Conference of the American Association for Artificial Intelligence (AAAI)(1990) pp. 164-169.

  122. A. Kakas and R. Miller, A simple declarative language for describing narratives with actions, in [155] (1997) pp. 157-200.

  123. G.N. Kartha, Soundness and completeness theorems for three formalizations of actions, in: Proc. of 13th International Joint Conference on Artificial Intelligence (IJCAI), Chambéry, France (Morgan Kaufmann, San Mateo, CA, 1993) pp. 724-729.

    Google Scholar 

  124. G.N. Kartha, Two counterexamples related to baker's approach to the frame problem, Artificial Intelligence 69 (1994) 379-392.

    Article  MATH  MathSciNet  Google Scholar 

  125. G.N. Kartha and V. Lifschitz, Actions with indirect effects (preliminary report), in: Proc. of the 4th International Conference on Principles of Knowledge Representation and Reasoning (KR)(Morgan Kaufmann, San Mateo, CA, 1994) pp. 341-350.

    Google Scholar 

  126. H. Kautz, The logic of persistence, in: Proc. of the 5th National Conference on Artificial Intelligence (AAAI), Philadelphia, PA (AAAI Press, Menlo Park, 1986) pp. 401-405.

    Google Scholar 

  127. H. Kautz and P. Ladkin, Integrating metric and qualitative temporal reasoning, in: Proc. of the 9th National Conference of the American Association for Artificial Intelligence (AAAI), Anaheim, CA (AAAI Press/MIT Press, 1991) pp. 241-246.

  128. D. Kayser and A. Moktari, Time in a Causal Theory, in [52] (1998) pp. 117-138.

  129. E.T. Keravnou (ed.), Special issue on temporal reasoning in medicine, Artificial Intelligence in Medicine 3(6) (1991).

  130. E.T. Keravnou (ed.), Special issue on temporal reasoning in medicine, Artificial Intelligence in Medicine 8(3) (1996).

  131. E.T. Keravnou and J. Washbrook, A temporal framework used in the diagnosis of skeletal dysplasias, Artificial Intelligence in Medicine 2 (1990) 239-265.

    Article  Google Scholar 

  132. H. Kim, Prediction and postdiction under uncertainty, Ph.D. thesis, Department of Computer and Information Science, Link¨oping University, Sweden (1995).

  133. J. de Kleer and J.S. Brown, A qualitative physics based on confluences, Artificial Intelligence 24 (1984) 7-84.

    Article  Google Scholar 

  134. J. Koehler, Correct modification of complex plans, in: Proc. of the 11th European Conference on Artificial Intelligence (ECAI), Amsterdam, Netherlands (Wiley, New York, 1994) pp. 605-609.

    Google Scholar 

  135. M. Koubarakis, From local to global consistency in temporal constraint networks, Theoretical Computer Science 173 (1997) 89-112.

    Article  MATH  MathSciNet  Google Scholar 

  136. R. Kowalski, Database updates in the event calculus, Journal of Logic Programming 12 (1992) 121-146.

    Article  MathSciNet  Google Scholar 

  137. R. Kowalski and F. Sadri, Reconciling Event Calculus with Situation Calculus, in [155] (1997) pp. 39-58.

  138. R. Kowalski and M. Sergot, A logic-based calculus of events, New Generation Computing 4 (1986) 67-95.

    Article  Google Scholar 

  139. B. Kuipers, Qualitative simulation, Artificial Intelligence 29 (1986) 289-388.

    Article  MATH  MathSciNet  Google Scholar 

  140. P. Ladkin, Time representation: a taxonomy of interval relations, in: Proc. of the 5th National Conference of the American Association for Artificial Intelligence (AAAI)(AAAI Press, Philadelphia, PA, 1986) pp. 360-366.

    Google Scholar 

  141. P. Ladkin and R. Maddux, The algebra of constraint satisfaction problems and temporal reasoning, Technical Report, Kestrel Institute, Palo Alto, CA (1988).

  142. P. Ladkin and Reinefeld, Effective solution of qualitative interval constraint problems, Artificial Intelligence 57 (1992) 105-124.

    Article  MathSciNet  Google Scholar 

  143. E. Lamma, P. Mello and M. Milano, A distributed constraint-based scheduler for railway traffic, Artificial Intelligence in Engineering 11(2) (1997) 91-105.

    Article  Google Scholar 

  144. B. Leban, D. McDonald and D. Foster, A representation for collections of temporal intervals, in: Proc. of the 5th National Conference of the American Association for Artificial Intelligence (AAAI), (AAAI Press, Philadelphia, PA, 1986) pp. 367-371.

    Google Scholar 

  145. H. Lee, J. Tannock and J.S. Williams, Logic-based reasoning about actions and plans in artificial intelligence, The Knowledge Engineering Review 8(2) (1993) 91-120.

    Article  Google Scholar 

  146. H.J. Levesque, What is planning in the presence of sensing?, in: Proc. of the 13th National Conference of the American Association for Artificial Intelligence (AAAI), Portland, OR (AAAI Press/MIT Press, 1996).

  147. H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin and R. Scherl, GOLOG: a Logic Programming Language for Dynamic Domains, in [155] (1997) pp. 59-83.

  148. V. Lifschitz, A theory of actions, in: Proc. of the 10th International Joint Conference on Artificial Intelligence (IJCAI), Milano, Italy (Morgan Kaufmann, San Mateo, CA, 1987).

    Google Scholar 

  149. V. Lifschitz, Pointwise circumscription, in: Readings in Nonmonotonic Reasoning, ed. M. Ginsberg (Morgan Kaufmann, San Mateo, CA, 1987). 102 L. Chittaro, A. Montanari / Temporal representation and reasoning in AI

    Google Scholar 

  150. V. Lifschitz, Formal theories of action, in: Proc. of the 1987 Workshop on The Frame Problem in Artificial Intelligence(Morgan Kaufmann, San Mateo, CA, 1987).

    Google Scholar 

  151. V. Lifschitz, Restricted monotonicity, in: Proc. of the 13th International Joint Conference on Artificial Intelligence (IJCAI), Chambéry, France (Morgan Kaufmann, San Mateo, 1993) pp. 432-437.

    Google Scholar 

  152. V. Lifschitz, Circumscription, in: Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 3, eds. D. Gabbay, C. Hogger and J. Robinsons (Oxford University Press, Oxford, 1993).

    Google Scholar 

  153. V. Lifschitz, Nested abnormality theories, Artificial Intelligence 74(2) (1995) 351-365.

    Article  MATH  MathSciNet  Google Scholar 

  154. V. Lifschitz, Guest Editor's Introduction: Reasoning about Action and Change, in [155] (1997) pp. 1-2.

  155. V. Lifschitz (ed.), Special issue on reasoning about action and change, Journal of Logic Programming 31(1-3) (1997).

  156. G. Ligozat, On generalized interval calculi, in: Proc. of the 9th National Conference of the American Association for Artificial Intelligence (AAAI), (AAAI Press/MIT Press, 1991) pp. 234-240.

  157. F. Lin and Y. Shoham, Concurrent actions in the situation calculus, in: Proc. of the 10th National Conference of the American Association for Artificial Intelligence (AAAI)(AAAI Press/MIT Press, 1992) pp. 590-695.

  158. F. Lin, Specifying the effects of indeterminate actions, in: Proc. of the 13th National Conference of the American Association for Artificial Intelligence (AAAI), Portland, OR (AAAI Press/MIT Press, 1996).

  159. S. Lin and T. Dean, Localized temporal reasoning using subgoals and abstract events, Computational Intelligence 12 (1996) 423-449.

    MathSciNet  Google Scholar 

  160. A.K. Mackworth, Consistency in networks of relations, Artificial Intelligence 8 (1977) 99-118.

    Article  MATH  Google Scholar 

  161. J. McCarthy, Circumscription-a form of non-monotonic reasoning, Artificial Intelligence 13 (1980) 27-29.

    Article  MATH  MathSciNet  Google Scholar 

  162. J. McCarthy, Applications of circumscription to formalizing common-sense knowledge, Artificial Intelligence 28 (1986) 89-116.

    Article  MathSciNet  Google Scholar 

  163. J. McCarthy, Situation calculus with concurrent events and narrative, http://www.formal.stanford. edu/gmc/narrative.html (1995).

  164. J. McCarthy and P.J. Hayes, Some philosophical problems from the standpoint of Artificial Intelligence, in: Machine Intelligence, Vol. 4, eds. B. Meltzer and D. Michie (Edinburgh University Press, 1969) pp. 463-502.

  165. D. McDermott, A temporal logic for reasoning about processes and plans, Cognitive Science 6 (1982) 101-155.

    Article  Google Scholar 

  166. S.A. McIlraith, Representing actions and state constraints in model-based diagnosis, in: Proc. of the 14th National Conference of the American Association for Artificial Intelligence (AAAI), Providence, RI (AAAI Press/MIT Press, 1997) pp. 43-49.

  167. I. Meiri, Combining qualitative and quantitative constraints in temporal reasoning, Artificial Intelligence 87(1-2) (1996) 343-385.

    Article  MathSciNet  Google Scholar 

  168. R. Miller and M. Shanahan, Narratives in the situation calculus, Journal of Logic and Computation 4(5) (1994) 513-530.

    MATH  MathSciNet  Google Scholar 

  169. R. Miller and M. Shanahan, The Event Calculus in Classical Logic-Alternative Axiomatisations, Link¨oping Electronic Articles in Computer and Information Science 4(16) (1999) http://www.ep.liu.se/ea/cis/1999/016/.

  170. R. Milner, Communication and Concurrency, Prentice-Hall International Series in Computer Science (Prentice-Hall, Englewood Cliffs, NJ, 1989).

    MATH  Google Scholar 

  171. D. Moffat and G. Ritchie, Modal queries about partially-ordered plans, Journal of Experimental and Theoretical Artificial Intelligence 2 (1990) 341-368.

    Google Scholar 

  172. R. Mohr and T. Henderson, Arc and path consistency revisited, Artificial Intelligence 28 (1986) 225-233.

    Article  Google Scholar 

  173. A. Montanari and B. Pernici, Chapter 21: Temporal Reasoning, in [230] (1993) pp. 534-562.

  174. A. Montanari, Metric and layered temporal logic for time granularity, ILLC Dissertation Series, 1996-02, Institute for Logic, Language and Computation, University of Amsterdam (1996).

  175. A. Montanari, A. Peron and A. Policriti, Decidable theories of !-layered metric temporal structures, in: Proc. of ICTL'97: 2nd International Conference on Temporal Logic, eds. H. Barringer, M. Fisher, D. Gabbay and G. Gough (1997) pp. 75-89.

  176. A. Montanari, A. Peron and A. Policriti, Theories of !-layered metric temporal structures: Expressiveness and decidability, The Logic Journal of IGPL 7(1) (1999) 79-102.

    Article  MATH  MathSciNet  Google Scholar 

  177. A. Montanari and A. Policriti, Decidability results for metric and layered temporal logics, Notre Dame Journal of Formal Logic 37 (1996) 260-282.

    Article  MATH  MathSciNet  Google Scholar 

  178. A. Montanari and A. Policriti, Executing metric temporal logic, in: Proc. of the IJCAI'97 Workshop on Programming in Temporal and Non Classical Logics, eds. C. Brzoska and M. Fisher (1997).

  179. A. Montanari and M. de Rijke, Two-sorted metric temporal logic, Theoretical Computer Science 183 (1997) 187-214.

    Article  MATH  MathSciNet  Google Scholar 

  180. U. Montanari, Networks of constraints: Fundamental properties and applications to picture processing, Information Sciences 7 (1974) 95-132.

    Article  MATH  MathSciNet  Google Scholar 

  181. L. Mongenstern, The Problem with Solutions to the Frame Problem, in: The Robot's Dilemma Revisited: The Frame Problem in AI, eds. K. Ford and Z. Pylyshyn (Ablex, Norwood, NJ, 1996).

    Google Scholar 

  182. P.H. Morris, The anomalous extension problem in default reasoning, Artificial Intelligence 35 (1988) 383-399.

    Article  MATH  MathSciNet  Google Scholar 

  183. B. Nebel, Solving hard qualitative temporal reasoning problems: Evaluating the efficiency of using the ORD-horn class, in: Proc. of the 12th European Conference on Artificial Intelligence (ECAI), Budapest, Hungary (Wiley, New York, 1996) pp. 38-42.

    Google Scholar 

  184. B. Nebel and C. B¨ackstr¨om, On the computational complexity of temporal projection, planning, and plan validation, Artificial Intelligence 66 (1994) 125-160.

    Article  MATH  MathSciNet  Google Scholar 

  185. B. Nebel and H.J. B¨urckert, Reasoning about temporal relations: A maximal tractable subclass of Allen's Interval Algebra, Journal of the ACM 42(1) (1995) 43-66.

    Article  MATH  MathSciNet  Google Scholar 

  186. L. Ngo, P. Haddawy, R.A. Krieger and J. Helwig, Efficient temporal probabilistic reasoning via context-sensitive model construction, in [55] (1997) pp. 453-476.

  187. M. Niezette and J. Stevenne, An efficient symbolic representation of periodic time, in: Proc. of the 1st International Conference on Information and Knowledge Management (CIKM)(1992) pp. 161-168.

  188. K. N¨okel, Temporally Distributed Symptoms in Technical Diagnosis(Springer, Berlin, 1991).

    Google Scholar 

  189. H.J. Ohlbach, Translation methods for non-classical logics: a survey, The Logic Journal of the IGPL 1 (1991) 69-89.

    Google Scholar 

  190. G. Ozsoyoglu and R.T. Snodgrass, Temporal and real-time databases: a survey, IEEE Transactions on Knowledge and Data Engineering 7(4) (1995) 513-532.

    Article  Google Scholar 

  191. J. Pearl, Probabilistic Reasoning in Intelligent Systems, 2nd Edition (Morgan Kaufmann, San Mateo, CA, 1992).

    Google Scholar 

  192. J. Pearl, Belief networks revisited, Artificial Intelligence 59 (1993) 49-56.

    Article  Google Scholar 

  193. E. Pednault, ADL: exploring the middle ground between STRIPS and the Situation Calculus, in: Proc. of 1st International Conference on Knowledge Representation and Reasoning (KR)(Morgan Kaufmann, San Mateo, CA, 1989) pp. 324-332.

    Google Scholar 

  194. J. Pinto, Temporal reasoning in the situation calculus, Ph.D. thesis, University of Toronto, Department of Computer Science (1994).

  195. J. Pinto, Concurrent actions and interacting effects, in: Proc. of the 6th International Conference on Knowledge Representation and Reasoning (KR), Trento, Italy (Morgan Kaufmann, San Mateo, CA, 1998) pp. 292-303.

    Google Scholar 

  196. J. Pinto and R. Reiter, Temporal reasoning in logic programming: A case for the situation calculus, in: Proc. of the 10th International Conference on Logic Programming (ICPL)(MIT Press, Cambridge, MA, 1993) pp. 203-221.

    Google Scholar 

  197. A. Provetti, Hypothetical reasoning about actions: From Situation Calculus to Event Calculus, Computational Intelligence 12(3) (1996) 478-498.

    MathSciNet  Google Scholar 

  198. M. Rayner, On the applicability of nonmonotonic logic to formal reasoning in continuous time, Artificial Intelligence 49 (1991) 345-360.

    Article  MathSciNet  Google Scholar 

  199. R. Reiter, The frame problem in the Situation Calculus: a simple solution (sometimes) and completeness result for goal regression, in: Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy, ed. V. Lifschitz (Academic Press, New York, 1991) pp. 359-380.

    Google Scholar 

  200. R. Reiter, Natural actions, concurrency and continuous time in the situation calculus, in: Proc.of the 5th International Conference on Knowledge Representation and Reasoning (KR)(Morgan Kaufmann, San Mateo, CA, 1996) pp. 2-13.

    Google Scholar 

  201. R. Reiter, KNOWLEDGE IN ACTION: Logical Foundations for Describing and Implementing Dynamical Systems, Book Draft, Version of January 5 (1999).

  202. F. Sadri and R. Kowalski, Variants of the event calculus, in: Proc. of the 12th International Conference on Logic Programming (ICLP), Kanagawa, Japan (MIT Press, Cambridge, MA, 1995) pp. 67-81.

    Google Scholar 

  203. E. Sandewall, Combining logic and differential equations for describing real-world systems, in: Proc. of the 1st International Conference on Principles of Knowledge Representation and Reasoning (KR)(Morgan Kaufmann, San Mateo, CA, 1989) pp. 412-420.

    Google Scholar 

  204. E. Sandewall, Filter preferential entailment for the logic of action in almost continuous worlds, in: Proc. of 11th International Joint Conference on Artificial Intelligence (IJCAI), Detroit, MI (Morgan Kaufmann, San Mateo, CA, 1989) pp. 894-899.

    Google Scholar 

  205. E. Sandewall, The range of applicability of nonmonotonic logics for the inertia problem, in: Proc. of 13th International Joint Conference on Artificial Intelligence (IJCAI), Chambéry, France (Morgan Kaufmann, San Mateo, CA, 1993).

    Google Scholar 

  206. E. Sandewall, Features and Fluents. A Systematic Approach to the Representation of Knowledge about Dynamical Systems(Oxford University Press, Oxford, 1994).

    Google Scholar 

  207. E. Sandewall (ed.), Electronic newsletter on reasoning about actions and change, http://www.ida. liu.se/ext/etai/actions/njl/ (1998).

  208. R. Scherl and H.J. Levesque, The frame problem and knowledge producing actions, in: Proc.of the 11th National Conference of the American Association for Artificial Intelligence (AAAI), Washington, DC (AAAI Press/MIT Press, 1993) pp. 689-695.

  209. L. Schubert, Monotonic solution of the frame problem in the Situation Calculus: an efficient method for worlds with fully specified actions, in: Knowledge Representation and Defeasible Reasoning, eds. H. Kyberg, R. Loui and G. Karlson (Kluwer Academic, 1990).

  210. E. Schwalb and R. Dechter, Processing disjunctions of temporal constraints, in [48] (1996) pp. 30-35.

  211. E. Schwalb and L. Vila, Temporal constraints: a survey, in [102] (1998) pp. 129-150.

  212. Y. Shahar, A framework for knowledge-based temporal abstraction, Artificial Intelligence 90(1-2) (1997) 79-133.

    Article  MATH  Google Scholar 

  213. Y. Shahar, Dynamic temporal interpretation contexts for temporal abstraction, in [52] (1998) pp. 159-192.

  214. M. Shanahan, Prediction is deduction but explanation is abduction, in: Proc. of the 11th International Joint Conference on Artificial Intelligence (IJCAI)(Morgan Kaufmann, San Mateo, CA, 1989) pp. 1055-1060.

    Google Scholar 

  215. M. Shanahan, Representing continuous change in the Event Calculus, in: Proc. of the 9th European Conference on Artificial Intelligence (ECAI), Stockholm, Sweden (Wiley, New York, 1990) pp. 598-603.

    Google Scholar 

  216. M. Shanahan, A Circumscriptive Calculus of Events, Artificial Intelligence 77 (1995) 249-284.

    Article  MATH  MathSciNet  Google Scholar 

  217. M. Shanahan, Solving the Frame Problem: a Mathematical Investigation of the Common Sense Law of Inertia(MIT Press, Cambridge, MA, 1997).

    Google Scholar 

  218. M. Shanahan, Robotics and the common sense informatic situation, in: Proc. of the 12th European Conference on Artificial Intelligence (ECAI), Budapest, Hungary (Wiley, New York, 1996) pp. 684-688.

    Google Scholar 

  219. M. Shanahan, Noise and the common sense informatic situation for a mobile robot, in: Proc. of the 13th National Conference of the American Association for Artificial Intelligence (AAAI), Portland, OR (AAAI Press/MIT Press, 1996) pp. 1098-1103.

  220. S. Shapiro, Y. Lespérance and H.J. Levesque, Goals and rational action in the situation calculus-a preliminary report, in: Working Notes of the AAAI Fall Symposium on Rational Agency: Concepts, Theories, Models and Applications, Cambridge, MA (1995).

  221. Y. Shoham, Reified temporal logics: semantical and ontological considerations, in: Proc. of the 7th European Conference on Artificial Intelligence (ECAI), Brighton, UK (1986) pp. 390-397.

  222. Y. Shoham, Chronological ignorance: Experiments in nonmonotonic temporal reasoning, Artificial Intelligence 36 (1988) 279-331.

    Article  MATH  MathSciNet  Google Scholar 

  223. Y. Shoham, Reasoning About Change: Time and Causation From the Standpoint of Artificial Intelligence(MIT Press, Cambridge, MA, 1988).

    Google Scholar 

  224. Y. Shoham, Nonmonotonic reasoning and causation, Cognitive Science 14 (1990) 213-252.

    Article  Google Scholar 

  225. Y. Shoham and D. McDermott, Problems in formal temporal reasoning, Artificial Intelligence 36 (1988) 49-61.

    Article  MATH  Google Scholar 

  226. R. Snodgrass (ed.), The TSQL2 Temporal Query Language(Kluwer Academic, Boston, MA, 1995).

    MATH  Google Scholar 

  227. F. Song and R. Cohen, The interpretation of temporal relations in narrative, in: Proc. of the 7th National Conference of the American Association for Artificial Intelligence (AAAI), Saint Paul, MI (AAAI Press, 1988) pp. 745-750.

  228. L.A. Stein and L. Morgenstern, Motivated action theory, Artificial Intelligence 71 (1994) 1-42.

    Article  MATH  MathSciNet  Google Scholar 

  229. J. Stillman, R. Arthur and A Deitsch, Tachyon: A constraint-based temporal reasoning model and its implementation, SIGART Bulletin 4(3) (1993) T1-T4.

    Google Scholar 

  230. A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev and R. Snodgrass, Temporal Databases: Theory, Design and Implementation, eds. Tansel et al. (Benjamin/Cummings, 1993).

  231. A. Tarski, On the calculus of relations, Journal of Symbolic Logic 6 (1941) 73-89.

    Article  MATH  MathSciNet  Google Scholar 

  232. A.Y. Tawfik and E.M. Neufeld, Irrelevance in uncertain temporal reasoning, in [48] (1996) pp. 182-187.

  233. E. Ternovskaia, Interval situation calculus, in: Proc. of ECAI-94 Workshop on Logic and Change(Amsterdam, The Netherlands, 1994) pp. 153-164.

  234. M. Thielscher, Computing ramifications by postprocessing, in: Proc. of 14th International Joint Conference on Artificial Intelligence (IJCAI), Montréal, Québec (Morgan Kaufmann, San Mateo, CA, 1995) pp. 1994-2000.

    Google Scholar 

  235. M. Thielscher, On the completeness of SLDENF-resolution, Journal of Automated Reasoning 17(2) (1996) 199-214.

    Article  MATH  MathSciNet  Google Scholar 

  236. M. Thielscher, Causality and the qualification problem, in: Proc. of the 5th International Conference on Principles of Knowledge Representation and Reasoning (KR)(Morgan Kaufmann, San Mateo, CA, 1996) pp. 51-62.

    Google Scholar 

  237. M. Thielscher, Ramification and causality, Artificial Intelligence 89(1-2) (1997) 317-364.

    Article  MATH  MathSciNet  Google Scholar 

  238. M. Thielscher, Introduction to the Fluent Calculus, Link¨oping Electronic Articles in Computer and Information Science 3(14) (1998); http://www.ep.liu.se/ea/cis/1998/014.

  239. E.P.K. Tsang, Elements in temporal reasoning in planning, in: Proc. of the 8th European Conference on Artificial Intelligence (ECAI), M¨unchen (Pitman, London, 1988).

  240. R.E. Valdes-Perez, The satisfiability of temporal constraint networks, in: Proc. of the 6th National Conference of the American Association for Artificial Intelligence (AAAI), Seattle, WA (AAAI Press, Menlo Park, CA, 1987) pp. 256-260.

    Google Scholar 

  241. T. Vidal and M. Ghallab, Dealing with uncertain durations in temporal constraint networks dedicated to planning, in: Proc. of the 12th European Conference of Artificial Intelligence (ECAI), Budapest, Hungary (Wiley, New York, 1996) pp. 48-52.

    Google Scholar 

  242. L. Vila and H. Reichgelt, The token reification approach to temporal reasoning, Artificial Intelligence 83 (1996) 59-74.

    Article  MathSciNet  Google Scholar 

  243. M.B. Vilain, A system for reasoning about time, in: Proc. of the 2nd National Conference of the American Association for Artificial Intelligence (AAAI)(AAAI Press, Pittsburgh, PA, 1982) pp. 197-201.

    Google Scholar 

  244. M.B. Vilain and H. Kautz, Constraint propagation algorithms for temporal reasoning, in: Proc. of the 5th National Conference of the American Association for Artificial Intelligence (AAAI), Philadelphia, PA (AAAI Press, Menlo Park, CA, 1986) pp. 377-382.

    Google Scholar 

  245. M.B. Vilain, H. Kautz and P. van Beek, Constraint propagation algorithms for temporal reasoning: a revised report, in: Readings in Qualitative about Physical Systems, eds. D.S. Weld and J. de Kleer (Morgan Kaufmann, San Mateo, CA, 1989) pp. 373-381.

    Google Scholar 

  246. A.B. Webber, Proof of the interval satisfiability conjecture, Annals of Mathematics and Artificial Intelligence 15 (1995) 231-238.

    Article  MATH  MathSciNet  Google Scholar 

  247. W.A. Woods, What's important about knowledge representation?, IEEE Computer (1983) 22-29.

  248. C. Yi, Reasoning about concurrent actions with features and fluents, in [48] (1996) pp. 6-13.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chittaro, L., Montanari, A. Temporal representation and reasoning in artificial intelligence: Issues and approaches. Annals of Mathematics and Artificial Intelligence 28, 47–106 (2000). https://doi.org/10.1023/A:1018900105153

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018900105153

Keywords

Navigation