Skip to main content
Log in

On Monin–Obukhov Similarity In The Stable Atmospheric Boundary Layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Atmospheric measurements from several field experiments have been combined to develop a better understanding of the turbulence structure of the stable atmospheric boundary layer. Fast response wind velocity and temperature data have been recorded using 3-dimensional sonic anemometers, placed at severalheights (≈1 m to 4.3 m) above the ground. The measurements wereused to calculate the standard deviations of the three components of the windvelocity, temperature, turbulent kinetic energy (TKE) dissipation andtemperature variance dissipation. These data were normalized and plottedaccording to Monin–Obukhov similarity theory. The non-dimensional turbulencestatistics have been computed, in part, to investigate the generalapplicability of the concept of z-less stratification for stable conditions. From the analysis of a data set covering almost five orders ofmagnitude in the stability parameter ζ = z/L (from near-neutral tovery stable atmospheric stability), it was found that this concept does nothold in general. It was only for the non-dimensional standard deviation oftemperature and the average dissipation rate of turbulent kinetic energythat z-less behaviour has been found. The other variables studied here(non-dimensional standard deviations of u, v, and w velocity components and dissipation of temperature variance) did not follow the concept of z-less stratification for the very stable atmospheric boundary layer. An imbalance between production and dissipation of TKE was found for the near-neutral limit approached from the stable regime, which matches with previous results for near-neutral stability approached from the unstable regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertson, J. D.,Katul, G. G.,Parlange, M. B., andEichinger, W. E.: 1998, ‘Spectral Scaling of Static Pressure Fluctuations in the Atmospheric Surface Layer: The Interaction between Large and Small Scales’ Phys. Fluids 10, 1725-1732.

    Google Scholar 

  • Albertson, J. D.,Parlange, M. B.,Kiely, G., andEichinger, W. E.: 1997, ‘The Average Dissipation Rate of Turbulent Kinetic Energy in the Neutral and Unstable Atmospheric Surface Layer’ J. Geophys. Res. 102, 13423-13432.

    Google Scholar 

  • Anselmet, F.,Gagne, Y.,Hopfinger, E. J., andAntonia, R. A.: 1984, ‘High-Order Velocity Structure Functions in Turbulent Shear Flows’ J. Fluid Mech. 140, 63-89.

    Google Scholar 

  • Beljaars, A. C. M. andHoltslag, A. A. M.: 1991, ‘Flux Parameterization over Land Surfaces for Atmospheric Models’ J. Appl. Meteorol. 30, 327-341.

    Google Scholar 

  • Brutsaert, W.: 1992, ‘Stability Correction Functions for the Mean Wind Speed and Temperature in the Unstable Surface Layer’ Geophys. Res. Lett. 19, 469-472.

    Google Scholar 

  • Brutsaert, W.: 1999, ‘Aspects of Bulk Atmospheric Boundary Layer Similarity under Free-Convective Conditions’ Rev. Geophys. 37, 439-451.

    Google Scholar 

  • Businger, J. A.,Wyngaard, J. C.,Izumi, Y., andBradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’ J. Atmos. Sci. 28, 181-189.

    Google Scholar 

  • Caughey, S. J.,Wyngaard, J. C., andKaimal, J. C.: 1979, ‘Turbulence in the Evolving Stable Boundary Layer’ J. Atmos. Sci. 36, 1041-1052.

    Google Scholar 

  • Champagne, F. H.,Friehe, C. A., andLarue, J. C.: 1977, ‘Flux Measurements, Flux Estimation Techniques, and Fine-Scale TurbulenceMeasurements in the Unstable Surface Layer over Land’ J. Atmos. Sci. 34, 515-530.

    Google Scholar 

  • Chu, C. R,Parlange, M. B.,Katul, G. G., andAlbertson, J. D.: 1996, ‘Probability Density Functions of Turbulent Velocity and Temperature in the Atmospheric Surface Layer’ Water Resour. Res. 32, 1681-1688.

    Google Scholar 

  • De Bruin, H. A. R.,Kohsiek, W., andvan den Hurk, J. J. M.: 1993, ‘A Verification of Some Methods to Determine the Fluxes of Momentum, Sensible Heat, and Water Vapour Using Standard Deviation and Structure Parameter of Scalar Meteorological Quantities’ Boundary-Layer Meteorol. 63, 231-257.

    Google Scholar 

  • Dias, N. L. andBrutsaert, W.: 1996, ‘Similarity of Scalars under Stable Stratification’ Boundary-Layer Meteorol. 80, 355-373.

    Google Scholar 

  • Dias, N. L.,Brutsaert, W., andWesley, M. L.: 1995, ‘z-Less Stratification under Stable Conditions’ Boundary-Layer Meteorol. 75, 175-187.

    Google Scholar 

  • Dyer, A. J.: 1974, ‘A Review of Flux-Profile Relationships’ Boundary-Layer Meteorol. 7, 363-372.

    Google Scholar 

  • Dyer, A. J. andHicks, B. B.: 1970, ‘Flux-Gradient Relationships in the Constant Flux Layer’ Quart. J. Roy. Meteorol. Soc. 96, 715-721.

    Google Scholar 

  • Finnigan, J.: 1999, ‘A Note on Wave-Turbulence Interaction and the Possibility of Scaling the Very Stable Boundary Layer’ Boundary-Layer Meteorol. 90, 529-539.

    Google Scholar 

  • Forrer, J. andRotach, M. W.: 1997, ‘On the Turbulence Structure in the Stable Boundary Layer over the Greenland Ice Sheet’ Boundary-Layer Meteorol. 85, 111-136.

    Google Scholar 

  • Frenzen, P. andVogel, C. A.: 1992, ‘The Turbulent Kinetic Energy Budget in the Atmospheric Surface Layer: A Review and an Experimental Reexamination in the Field’ Boundary-Layer Meteorol. 60, 49-76.

    Google Scholar 

  • Högström, U.: 1988, ‘Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Re-Evaluation’ Boundary-Layer Meteorol. 42, 55-78.

    Google Scholar 

  • Högström, U.: 1990a, ‘Analysis of Turbulence Structure in the Surface Layer in Near-Neutral Conditions’ in Proceeding of the Ninth Symposium on Turbulence and Diffusion, Røskilde, Denmark, April 30-May 3, 1990, Amer. Meteorol. Soc., pp. 235-236.

  • Högström, U.: 1990b, ‘Analysis of Turbulence Structures in the Surface Layer with a Modified Similarity Formulation for Near Neutral Conditions’ J. Atmos. Sci. 47, 1949-1972.

    Google Scholar 

  • Howell, J. F. and Sun, J.: 1999, ‘Surface-Layer Fluxes in Stable Conditions’ Boundary-Layer Meteorol. 90, 495-520.

    Google Scholar 

  • Hsieh C. I. andKatul, G. G.: 1997, ‘Dissipation Methods, Taylor's Hypothesis, and Stability Correction Functions in the Atmospheric Surface Layer’ J. Geophys. Res. 102, 16391-16405.

    Google Scholar 

  • Kader, B. A. andYaglom, A. M.: 1990, ‘Mean Fields and FluctuationMoments in Unstably Stratified Turbulent Boundary Layers’ J. Fluid Mech. 212, 637-662.

    Google Scholar 

  • Kaimal, J. C.: 1986, ‘Flux and Profile Measurements from Towers in the Boundary Layer’ in D. H. Lenschow (ed.), Probing the Atmospheric Boundary Layer, Amer. Meteorol. Soc., pp. 19-28.

  • Kaimal, J. C. andFinnigan, J. J.: 1994, Atmospheric Boundary Layer Flows: Their Structure and Measurement, Oxford University Press, 289 pp.

  • Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Coté, O. R., Izumi, Y., Caughey, S. J., and Readings, C. J.: 1976, ‘Turbulence Structure in the Convective Boundary Layer’ J. Atmos. Sci. 33, 2152-2169.

    Google Scholar 

  • Katul, G. G.,Hsieh, C. I., andSigmon, J.: 1997, ‘Energy-Inertial Scale Interactions for Velocity and Temperature in the Unstable Atmospheric Surface Layer’ Boundary-Layer Meteorol. 82, 49-80.

    Google Scholar 

  • Kiely, G.,Albertson, J. D.,Parlange, M. B., andEichinger, W. E.: 1996, ‘Convective Scaling of the Average Dissipation Rate of Temperature Variance in the Atmospheric Surface Layer’ Boundary-Layer Meteorol. 77, 267-284.

    Google Scholar 

  • Kolmogorov, A. N.: 1941, ‘The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers’ Dokl. Akad. Nauk. SSSR 30, 301-303.

    Google Scholar 

  • Kondo, J.,Kanechika, O., andYasuda, N.: 1978, ‘Heat and Momentum Under Strong Stability in the Atmospheric Surface Layer’ J. Atmos. Sci. 35, 1012-1021.

    Google Scholar 

  • Mahrt, L.: 1985, ‘Vertical Structure and Turbulence in the Very Stable Boundary Layer’ J. Atmos. Sci. 42, 2333-2349.

    Google Scholar 

  • Mahrt, L.: 1998, ‘Stratified Atmospheric Boundary Layers and Breakdown of Models’ Theoret. Comput. Fluid Dyn. 11, 263-279.

    Google Scholar 

  • Mahrt, L.: 1999, ‘Stratified Atmospheric Boundary Layers’ Boundary-Layer Meteorol. 90, 375-396.

    Google Scholar 

  • Mahrt, L.,Sun, J.,Blumen, W.,Delany, T., andOncley, S.: 1998, ‘Nocturnal Boundary-Layer Regimes’ Boundary-Layer Meteorol. 88, 255-278.

    Google Scholar 

  • Malhi, Y. S.: 1995, ‘The Significance of the Dual Solutions for Heat Fluxes Measured by the Temperature Fluctuation Method in Stable Conditions’ Boundary-Layer Meteorol. 74, 389-396.

    Google Scholar 

  • Merry, M. andPanofsky, H. A.: 1976, ‘Statistics of Vertical Motion over Land and Water’ Quart. J. Roy. Meteorol. Soc. 102, 255-260.

    Google Scholar 

  • Monin, A. S. andObukhov, A. M..: 1954, ‘Basic Laws of Turbulent Mixing in the Ground Layer of the Atmosphere’ Trans. Geophys. Inst. Akad. Nauk. USSR 151, 163-187.

    Google Scholar 

  • Monin, A. S. andYaglom, A. M.: 1971, Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 1, MIT Press, Cambridge, MA, 769 pp.

    Google Scholar 

  • Monin, A. S. andYaglom, A. M.: 1975, Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 2, MIT Press, Cambridge, MA, 874 pp.

    Google Scholar 

  • Nieuwstadt, F. T. M.: 1984a, ‘The Turbulent Structure of the Stable, Nocturnal Boundary Layer’ J. Atmos. Sci. 41, 2202-2216.

    Google Scholar 

  • Nieuwstadt, F. T. M.: 1984b, ‘Some Aspects of the Turbulent Stable Boundary Layer’ Boundary-Layer Meteorol. 30, 31-55.

    Google Scholar 

  • Panofsky, H. A. andDutton, J. A.: 1984, Atmospheric Turbulence: Models and Methods for Engineering Applications, Wiley and Sons, 397 pp.

  • Parlange, M. B. andKatul, G. G.: 1995, ‘Watershed Scale Shear Stress from Tethersonde Wind Profile Measurements under Near Neutral and Unstable Atmospheric Stability’ Water Resour. Res. 31, 961-968.

    Google Scholar 

  • Parlange, M. B.,Albertson, J. D.,Eichinger, W. E.,Cahill, A. T.,Jackson, T. J.,Kiely, G., andKatul, G. G.: 1999, ‘Evaporation: Use of Fast-Response Turbulence Sensors, Raman Lidar, and Passive Microwave Remote Sensing’ in M. B. Parlange andJ. W. Hopmans (eds.), Vadose Zone Hydrology: Cutting across Disciplines, Oxford University Press, 454 pp.

  • Parlange, M. B.,Eichinger, W. E., andAlbertson, J. D.: 1995, ‘Regional Scale Evaporation and the Atmospheric Boundary Layer’ Rev. Geophys. 33, 99-124.

    Google Scholar 

  • Peltier, L. J.,Wyngaard, J. C., Khanna, and Brasseur, J. G.: 1996, ‘Spectra in the Unstable Surface Layer’ J. Atmos. Sci. 53, 49-61.

    Google Scholar 

  • Porté-Agel, F.,Meneveau, C., andParlange, M. B.: 1998, ‘Some Basic Properties of the Surrogate Subgrid-Scale Heat Flux in the Atmospheric Boundary Layer’ Boundary-Layer Meteorol. 88, 425-444.

    Google Scholar 

  • Porté-Agel, F.,Parlange, M. B.,Meneveau, C.,Eichinger, W. E., andPahlow, M.: 2000, ‘Subgridscale Dissipation in the Atmospheric Surface Layer: Effects of Stability and Filter Dimension’ J. Hydrometeorol. 1, 75-87.

    Google Scholar 

  • Porté-Agel, F.,Parlange, M. B.,Meneveau, C., andEichinger, W. E.: 2001, ‘A Priori Field Study of the Subgrid-Scale Heat Fluxes and Dissipation in the Atmospheric Surface Layer’ J. Atmos. Sci., in press.

  • Smedman, A.: 1988, ‘Observations of a Multi-Level Turbulence Structure in a Very Stable Boundary Layer’ Boundary-Layer Meteorol. 44, 231-253.

    Google Scholar 

  • Sorbjan, Z.: 1986, ‘On Similarity Theory in the Atmospheric Boundary Layer’ Boundary-Layer Meteorol. 34, 377-397.

    Google Scholar 

  • Stull, R. B.: 1988, ‘An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 670 pp.

    Google Scholar 

  • Takeuchi, K.: 1961, ‘On the Structure of the Turbulent Field in the Surface Boundary Layer’ J. Meteorol. Soc. Jpn. 39, 346-364.

    Google Scholar 

  • Taylor, G. I.: 1938, ‘The Spectrum of Turbulence’ Proc. Roy. Soc. London A164, 476-490.

    Google Scholar 

  • Tong, C. N.,Wyngaard, J. C., andBrasseur, J. G.: 1999, ‘Experimental Study of the Subgrid-Scale Stresses in the Atmospheric Surface Layer’ J. Atmos. Sci. 56, 2277-2292.

    Google Scholar 

  • Tong, C. N.,Wyngaard, J. C.,Khanna, S., andBrasseur, J. G.: 1998, ‘Resolvable and Subgrid-Scale Measurement in the Atmospheric Surface Layer: Technique and Issues’ J. Atmos. Sci. 55, 3114-3126.

    Google Scholar 

  • von Karman, T. andHowarth, L.: 1938, ‘On the Statistical Theory of Isotropic Turbulence’ Proc. Roy. Soc. London A164, 192-215.

    Google Scholar 

  • Wang, J. andMitsuta, Y.: 1991, ‘Turbulence Structure and Transfer Characteristics in the Surface Layer of the HEIFE Gobi Area’ J. Meteorol. Soc. Japan 69, 587-593.

    Google Scholar 

  • Wyngaard, J. C.: 1981, ‘Cup, Propeller, Vane, and Sonic Anemometers in Turbulence Research’ Annu. Rev. Fluid Mech. 13, 399-423.

    Google Scholar 

  • Wyngaard, J. C. andClifford, S. F.: 1977, ‘Taylor's Hypothesis and High-Frequency Turbulence Spectra’ J. Atmos. Sci. 34, 922-929.

    Google Scholar 

  • Wyngaard, J. C. andCoté, O. R.: 1971, ‘The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer’ J. Atmos. Sci. 28, 190-201.

    Google Scholar 

  • Wyngaard, J. C. andCoté, O. R.: 1972, ‘Cospectral Similarity in the Atmospheric Surface Layer’ Quart. J. Roy. Meteorol. Soc. 98, 590-603.

    Google Scholar 

  • Wyngaard, J. C.,Coté, O. R., andIzumi, Y.: 1971, ‘Local Free Convection, Similarity, and the Budgets of Shear Stress and Heat Flux’ J. Atmos. Sci. 28, 1171-1182.

    Google Scholar 

  • Yaglom, A. M.: 1949, ‘Homogeneous and Isotropic Turbulence in a Viscous Compressible Fluid’ Izv. Akad. Nauk. SSSR, Ser. Geogr. i Geofiz. 12, 501-522.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pahlow, M., Parlange, M.B. & Porté-Agel, F. On Monin–Obukhov Similarity In The Stable Atmospheric Boundary Layer. Boundary-Layer Meteorology 99, 225–248 (2001). https://doi.org/10.1023/A:1018909000098

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018909000098

Navigation