Skip to main content
Log in

An attempt to bridge the pressure and material gap with a disperse model catalyst for low-temperature alkane reforming

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Pt black was exposed to n>-hexane/H2 mixtures between 483 and 663 K followed by O2 and H2 treatments at 603 K. XP and UP spectra were measured without exposing the samples to air. 20–30% carbon accumulated after hydrocarbon exposures. O2 removed most carbon. The surface C content increased after a subsequent contact with H2, C 1s showing more “atomic carbon” as opposed to graphite after n-hexane exposure. Anisotropic recrystallization of Pt black favoring (220) and (311) lattice planes occurred under hydrogen-rich conditions. Both findings were attributed to a H2-induced solid-state rearrangement; H atoms penetrating into the crystal lattice, force subsurface carbon and oxygen atoms to the surface and a concomitant restructuring would occur. Thus another “hydrogen effect” has been recognized, leading to structures favorable for skeletal reactions of alkanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.P. Bonzel, Surf. Sci. 68 (1977) 236.

    Google Scholar 

  2. K. Christmann, Introduction to Surface Physical Chemistry (Steinkoppf/Springer, Darmstadt/New York, 1991) ch. 1.

    Google Scholar 

  3. D.W. Blakely, E. Kozak, B.A. Sexton and G.A. Somorjai, J. Vac. Sci. Technol. 13 (1976) 291.

    Google Scholar 

  4. G.A. Somorjai, Chemistry in Two Dimensions (Cornell Univ. Press, Ithaca, 1981).

    Google Scholar 

  5. S.C. Davis and K.J. Klabunde, Chem. Rev. 82 (1982) 153.

    Google Scholar 

  6. Z. Paál, R. Schlögl and G. Ertl, J. Chem. Soc. Faraday Trans. 88 (1992) 1179

    Google Scholar 

  7. Z. Paál, M. Muhler and R. Schlögl, Surf. Sci. Spectra 4 (1997) 119.

    Google Scholar 

  8. Z. Paál, Z. Zhan, E. Fülöp and B. Tesche, J. Catal. 156 (1995) 19.

    Google Scholar 

  9. T. Baird, Z. Paál and S.J. Thomson, J. Chem. Soc. Faraday Trans. I 69 (1973) 50, 1237.

    Google Scholar 

  10. JPCD file No. 4802.

  11. Z. Paál and R. Schlögl, Surf. Interface Anal. 19 (1992) 524.

    Google Scholar 

  12. Z. Paál, M. Muhler and K. Matusek, Appl. Catal. A 149 (1997) 113.

    Google Scholar 

  13. D. Briggs and M.P. Seah, eds., Practical Surface Analysis, Vol. 1 (Wiley, Chichester, 1990) appendix 6, p. 635.

    Google Scholar 

  14. Z. Paál, K. Matusek, A. Wootsch, U. Wild and R. Schlögl, in: 16th North American Catalysis Society Meeting, Boston, 30 May-4 June 1999, Catal. Today, submitted.

  15. Z. Paál and Z. Zhan, Langmuir 13 (1997) 3752.

    Google Scholar 

  16. U. Wild, D. Teschner, Z. Paál and R. Schlögl, in preparation.

  17. T.L. Barr, Modern ESCA (CRC, Baton Rouge, 1994) ch. 8.

    Google Scholar 

  18. U. Wild, N. Pfänder and R. Schlögl, Fresenius J. Anal. Chem. 357 (1997) 420.

    Google Scholar 

  19. A.D. van Langeveld, F.C.M.J.M. van Delft and V. Ponec, Surf. Sci. 135 (1983) 93.

    Google Scholar 

  20. A. Sárkány, H. Lieske, T. Szilágyi and L. Töth, in: Proc. 8th Int. Congr. Catal., Berlin, 1984, Vol. II (Verlag Chemie, Weinheim, 1984) p. 613.

    Google Scholar 

  21. M. Wolf, O. Deutschmann, F. Behrendt and J. Warnatz, Catal. Lett. 61 (1999) 15.

    Google Scholar 

  22. J. Küppers and G. Ertl, Surf. Sci. 77 (1978) L647.

    Google Scholar 

  23. Z. Paál and S.J. Thomson, J. Catal. 30 (1973) 96.

    Google Scholar 

  24. R. Sundararajan, G. Peto, E. Koltay and L. Guczi, Appl. Surf. Sci. 90 (1995) 165.

    Google Scholar 

  25. G.A. Somorjai and F. Zaera, J. Phys. Chem. 86 (1982) 3070.

    Google Scholar 

  26. F. Garin, G. Maire, S. Zyade, M. Zauwen, A. Frennet and P. Zielinski, J. Mol. Catal. 58 (1990) 185.

    Google Scholar 

  27. A. Sárkány, J. Chem. Soc. Faraday Trans. I 85 (1989) 1523.

    Google Scholar 

  28. J. Kiss, G. Klivényi, K. Révész and F. Solymosi, Surf. Sci. 223 (1989) 551.

    Google Scholar 

  29. C. Rehren, M. Muhler, X. Bao, R. Schlögl and G. Ertl, Z. Phys. Chem. 174 (1991) 11.

    Google Scholar 

  30. G. Maire, F. Bernhardt, P. Légaré and G. Lindauer, in: Proc. 7th Int. Vacuum Congr. & 3rd Int. Conf. Solid Surfaces, Vienna, 1977, p. 861.

  31. J.E. Demuth, Surf. Sci. 65 (1977) 369.

    Google Scholar 

  32. G.A. Somorjai, J. Mol. Catal. A 107 (1996) 39.

    Google Scholar 

  33. S. Nishiyama, K. Yoshioka, S. Matsuura, S. Tsuruya and M. Masai, React. Kinet. Catal. Lett. 33 (1987) 405.

    Google Scholar 

  34. S. Gao and L.D. Schmidt, J. Catal. 115 (1989) 356

    Google Scholar 

  35. T. Wang, C. Lee and L.D. Schmidt, Surf. Sci. 163 (1985) 181.

    Google Scholar 

  36. A. Dauscher, F. Garin and G. Maire, J. Catal. 105 (1987) 233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Find, J., Paál, Z., Schlögl, R. et al. An attempt to bridge the pressure and material gap with a disperse model catalyst for low-temperature alkane reforming. Catalysis Letters 65, 19–23 (2000). https://doi.org/10.1023/A:1019037926168

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019037926168

Navigation