Skip to main content
Log in

Pd nanoparticles prepared by “controlled colloidal synthesis” in solid/liquid interfacial layer on silica. I. Particle size regulation by reduction time

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Controlled colloidal synthesis (CCS) was developed to prepare monodisperse palladium particles in the nano-scale range on suspended SiO2 particles in an ethanol–toluene mixture. On colloidal SiO2 an about 1 nm thick ethanol-rich adsorption layer was produced in adsorption equilibrium with the liquid mixture. Ethanol served as a reducing agent for the Pd(II) ions diffusing from a toluene-rich liquid solution into the interfacial layer. The low reduction rate ensures the dominancy of particle growth over the nucleation of palladium during the reduction process after the initial nucleation. The relation between the reduction time and the particle size produced was studied. XRF, XPS, TEM, CO chemisorption, and benzene hydrogenation as catalytic test were employed to characterize the samples prepared using different reduction time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Che and C.O. Bennett, Adv. Catal. 36 (1989) 55.

    Google Scholar 

  2. G. Schmid, V. Maihack, F. Lautermann and S. Peschel, J. Chem. Soc. Dalton Trans. (1996) 589.

  3. B.C. Gates, L. Guczi and H. Knözinger, eds., Metal Clusters in Catalysis, Stud. Surf. Sci. Catal., Vol. 29 (Elsevier, Amsterdam, 1986).

  4. H. Bönnemann, Stud. Surf. Sci. Catal. 91 (1994) 185.

    Google Scholar 

  5. S.T. Homeyer and W.M.H. Sachtler, J. Catal. 118 (1989) 266.

    Google Scholar 

  6. M. Boutonet, J. Kizling, V. Mintsa-Eya, A. Choplin, R. Touroude, G. Maire and P. Stenius, J. Catal. 103 (1987) 95

  7. M. Kishida, K. Umakoshi, J.-I. Ishiyama, H. Nagat and K. Wakabayashi, Catal. Today 29 (1996) 355.

    Google Scholar 

  8. A.S. Eppler, G. Rupprechter, L. Guczi and G.A. Somorjai, J. Phys. Chem. B 101 (1997) 9973.

    Google Scholar 

  9. Z. Király, I. Dékány, A. Mastalir and M. Bartók, J. Catal. 161 (1996) 401.

    Google Scholar 

  10. I. Dékány, L. TÚri, E. Tombácz and J.H. Fendler, Langmuir 11 (1995) 2285.

    Google Scholar 

  11. I. Dékány, L. Nagy, L. TÚri, Z. Király, N.A. Kotov and J.H. Fendler, Langmuir 12 (1996) 3709.

    Google Scholar 

  12. G. Schay, in: Surface and Colloid Science, Vol. 2, ed. E. Matijevic (Wiley, London, 1969) p. 155

    Google Scholar 

  13. G. Schay, in: Surface Area Determination, Proc. Int. Symp., ed. D.H. Everett (Butterworth, London, 1969) p. 273.

    Google Scholar 

  14. J.R. Anderson, Structure of Metallic Catalysts (Academic Press, London, 1975).

    Google Scholar 

  15. A. Palazov, C.C. Chang and R.J. Kokes, J. Catal. 36 (1975) 338

    Google Scholar 

  16. G. Gubotisa, A. Berton, M. Camia and N. Pernicone, Stud. Surf. Sci. Catal. 16 (1983) 431.

    Google Scholar 

  17. M. Crocker, R.H.M. Herold, J.G. Buglass and P. Companje, J. Catal. 141 (1993) 713

    Google Scholar 

  18. J.P. Collmann, L.S. Hegedus, J.R. Norton and R.G. Finke, Principles and Applications of Organotransition Metal Chemistry (University Science Books, Mill Valley, CA, 1987) p. 90.

    Google Scholar 

  19. M.A. Vannice and W.C. Neikam, J. Catal. 23 (1971) 401

    Google Scholar 

  20. F. Figueras, S. Fuentes and C. Leclercq, in: Growth and Properties of Metal Clusters, ed. J. Bourdon (Elsevier, Amsterdam, 1980) p. 525

    Google Scholar 

  21. A. Benedetti, G. Cocco, S. Enzo, F. Pinna and L. Schiffini, J. Chim. Phys. 78 (1981) 877.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, A., Horváth, A., Szűcs, A. et al. Pd nanoparticles prepared by “controlled colloidal synthesis” in solid/liquid interfacial layer on silica. I. Particle size regulation by reduction time. Catalysis Letters 65, 33–42 (2000). https://doi.org/10.1023/A:1019048701152

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019048701152

Navigation