Skip to main content
Log in

Magnéli phases of anion-deficient rutile as lubricious oxides. Part I. Tribological behavior of single-crystal and polycrystalline rutile (TinO2n−1)

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In part I of this paper series, wide temperature range SEM-tribometric results generated in vacuum and various partial pressures of oxygen are combined with relevant literature data to examine a hypothesis correlating the oxygen stoichiometry of the TinO2n−1 Magnéli phases of the rutile polymorph of titania with their tribological behavior. Single-crystal and polycrystalline rutile specimens of narrow stoichiometry ranges were sliding against α-SiC and themselves. The surface shear strength changes were determined as a function of the thermal–atmospheric test environment, and the shear strength values were estimated by the coefficients of friction, the real area of contact and the published yield strength of rutile. The data appear to be sufficient and sufficiently reliable to confirm the accuracy of the hypothesis. The tendency of the rutile stoichiometry (ergo the friction) to shift as a function of temperature and partial pressure of oxygen causes this material to be thermo-oxidatively unstable for tribological applications in extreme environments. In part II, a study is described to formulate oxidatively more stable Magnéli phases by Cu-doping, and test the new materials by SEM tribometry using a procedure used for pure rutile here in part I. By employing this doping methodology similar to creating high-temperature superconductive oxides in part II, some feasibility of producing oxidatively stable, lubricious oxides with acceptably low wear rates is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.N. Gardos, Tribol. Trans. 31 (1988) 427; 32 (1989) 30.

  2. M.N. Gardos, H.-S. Hong and W.O. Winer, Tribol. Trans. 32 (1990) 209.

    Google Scholar 

  3. M.N. Gardos, in: New Materials Approaches to Tribology: Theory and Applications, Mater. Res. Soc. Symp. Proc., Vol. 140, eds. L.E. Pope, L.L Fehrenbacher and W.O Winer (1989) pp. 325–338.

  4. M.N. Gardos, in: Proc. 6th Int. Congr. Tribol. Eurotrib’ 93, Vol. 3, 30 August-2 September 1993, Budapest, Hungary, pp. 201–206.

    Google Scholar 

  5. M.N. Gardos, in: Plenary and Invited Papers from the 1st World Tribol. Congr. New Directions in Tribology, 8-12 September 1997, London (Mech. Eng. Publ. Ltd., Inst. Mech. Eng., 1997) pp. 229–250.

  6. A.J. Epstein and J.S. Miller, Sci. Am. 241 (1979) 52.

    CAS  Google Scholar 

  7. O. Narayan and D.S. Fischer, Phys. Rev. B 46 (1992) 11, 520.

    Google Scholar 

  8. R. James and C.R.A. Catlow, J. Phys. (Paris) 38 (1977) C7-32; C.R.A. Catlow and R. James, Proc. Roy. Soc. London A 384 (1982)

    Article  Google Scholar 

  9. M. Serratos and A. Bronson, Wear 198 (1996) 267.

    Article  CAS  Google Scholar 

  10. P.C.S. Hayfield, US Patent No. 4,422,913 (27 December 1983).

  11. R.L. Clarke and S.K. Harnsberger, Am. Lab. (News Ed.) (June 1988).

  12. L. Kullman, A. Azens and C.G. Granqvist, J. Appl. Phys. 81 (1997) 8002.

    Article  CAS  Google Scholar 

  13. C. DellaCorte and D.L. Deadmore, NASA TM-105959 (April 1993).

  14. A.R. Bally, P. Hones, R. Sanjinés, P.E. Schmid and F. Lévy, Surf. Coat. Technol. 108/109 (1998) 166.

    Article  Google Scholar 

  15. M.N. Gardos, WL-TR-94-4108, Hughes Aircraft Company, El Segundo, CA (October 1994).

  16. M.N. Gardos, Tribol. Lett. 2 (1996) 173.

    Article  CAS  Google Scholar 

  17. M.N. Gardos, Tribol. Lett. 4 (1998) 175.

    Article  CAS  Google Scholar 

  18. G.S. Rohrer, V.E. Henrich and D.A. Bonnell, Science 250 (1990) 1239; Q. Zhong, J.M. Vohs and D. Bonnell, J. Am. Ceram. Soc. 76 (1993) 1137.

    CAS  Google Scholar 

  19. H. Nörrenberg and G.A.D. Briggs, Surf. Sci. 402-404 (1998) 738.

    Article  Google Scholar 

  20. E.L. Venturini and R.A. Graham, in: Defect Properties and Processing of High-Technology Nonmetallic Materials, Mater. Res. Soc. Symp. Proc. 24 (1984) p. 383.

    CAS  Google Scholar 

  21. M.A. Henderson, Langmuir 12 (1996) 5093.

    Article  CAS  Google Scholar 

  22. G.J. Wood, L.A. Bursill, K. Yoshida and Y. Yamada, Philos. Mag. A 46 (1982) 75.

    CAS  Google Scholar 

  23. J.A Eastman, Y.X. Liao, A. Narayanasamy and R.W. Siegel, Mater. Res. Soc. Symp. Proc. 155 (1989) 255.

    CAS  Google Scholar 

  24. R.K DeVries, R. Roy and E.F. Osborn, Trans. Brit. Ceram. Soc. 53 (1954) 525.

    CAS  Google Scholar 

  25. M.F. Best and R.A. Condrate, Sr., J. Mater. Sci. 4 (1985) 994.

    CAS  Google Scholar 

  26. C.U.I. Odenbrand, J.G.M. Brandin and G. Busca, J. Catal. 135 (1992) 505.

    Article  CAS  Google Scholar 

  27. H. Sankur and W. Gunning, J. Appl. Phys. 66 (1989) 4747.

    Article  CAS  Google Scholar 

  28. H. Sankur and W. Gunning, J. Appl. Phys. 66 (1989) 807.

    Article  CAS  Google Scholar 

  29. A.A. Galuska, J.C. Uht, P.M. Adams and J.M. Coggi, J. Vac. Sci. Technol. A 6 (1988) 2403.

    Article  CAS  Google Scholar 

  30. M.N. Gardos, WRDC-TR-90-4096, Summary, Vol. 1, Hughes Aircraft Company, El Segundo, CA (November 1990).

  31. M.J. Mayo, R.W. Siegel, A. Narayanasam and W.D. Nix, J. Mater. Res. 5 (1990) 1073.

    CAS  Google Scholar 

  32. K.H.G. Ashbee and R.E. Smallman, Proc. Roy. Soc. London A 274 (1962) 195.

    Google Scholar 

  33. O.W. Johnson et al., AFML-TD R-64-114, University of Utah, Salt Lake City, UT, Contract No. AF33 (616)-6832, Project No. 7320, Task No. 735001 (April 1964).

  34. N.J. Shaw, Powder Metall. 21 (1989) 31.

    CAS  Google Scholar 

  35. R.S. Berry, J. Bernholc and P. Salamon, Appl. Phys. Lett. 58 (1991) 595.

    Article  Google Scholar 

  36. L.H. Edelson, M.S. thesis, Lawrence Berkeley Laboratory, University of California, Berkeley, CA (December 1986).

  37. H. Hahn, J. Logas and R.S. Averback, J. Mater. Res. 5 (1990) 609.

    CAS  Google Scholar 

  38. W. Wagner, R.S. Averback, H. Hahn, W. Petry and A. Wiedenmann, J. Mater. Res. 6 (1991) 2193.

    CAS  Google Scholar 

  39. K.-N.P. Kumar, K. Keizer, A.J. Burggraf, T. Okubo, H. Nagamoto and S. Morooka, Nature 358 (1992) 48.

    Article  CAS  Google Scholar 

  40. A.P. Reyes, E.T. Ahrens, R.H. Hmffner, P.C. Hammel and J.D. Thomson, Rev. Sci. Instrum. 63 (1992) 3120.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardos, M.N. Magnéli phases of anion-deficient rutile as lubricious oxides. Part I. Tribological behavior of single-crystal and polycrystalline rutile (TinO2n−1). Tribology Letters 8, 65–78 (2000). https://doi.org/10.1023/A:1019122915441

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019122915441

Navigation