Skip to main content
Log in

Numerical integration using sparse grids

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We present new and review existing algorithms for the numerical integration of multivariate functions defined over d-dimensional cubes using several variants of the sparse grid method first introduced by Smolyak [49]. In this approach, multivariate quadrature formulas are constructed using combinations of tensor products of suitable one-dimensional formulas. The computing cost is almost independent of the dimension of the problem if the function under consideration has bounded mixed derivatives. We suggest the usage of extended Gauss (Patterson) quadrature formulas as the one‐dimensional basis of the construction and show their superiority in comparison to previously used sparse grid approaches based on the trapezoidal, Clenshaw–Curtis and Gauss rules in several numerical experiments and applications. For the computation of path integrals further improvements can be obtained by combining generalized Smolyak quadrature with the Brownian bridge construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.R. Barron, Approximation and estimation bounds for artificial neural networks, Machine Learning 14 (1994) 115–133.

    MATH  Google Scholar 

  2. G. Baszenski and F.-J. Delvos, Multivariate Boolean midpoint rules, in: Numerical Integration IV, eds. H. Brass and G. Hämmerlin (Birkhäuser, Basel, 1993) pp. 1–11.

    Google Scholar 

  3. T. Bonk, A new algorithm for multi-dimensional adaptive numerical quadrature, in: Adaptive Methods – Algorithms, Theory and Applications, eds. W. Hackbusch and G. Wittum (Vieweg, Braunschweig, 1994) pp. 54–68.

    Google Scholar 

  4. H. Brass and K.-J. Förster, On the estimation of linear functionals, Analysis 7 (1987) 237–258.

    MATH  MathSciNet  Google Scholar 

  5. H.-J. Bungartz, Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung, Dissertation, Institut für Informatik, Technische Universität München (1992).

  6. R.E. Caflisch, W.J. Morokoff and A. Owen, Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension, J. Comput. Finance 1 (1997).

  7. C.W. Clenshaw and A.R. Curtis, A method for numerical integration on an automatic computer, Numer. Math. 2 (1960) 197–205.

    MATH  MathSciNet  Google Scholar 

  8. R. Cools and B. Maerten, Experiments with Smolyak’s algorithm for integration over a hypercube, Internal Report, Department of Computer Science, Katholieke Universiteit Leuven (1997).

  9. P.J. Davis and P. Rabinowitz, Methods of Numerical Integration (Academic Press, New York, 1975).

    MATH  Google Scholar 

  10. F.-J. Delvos, d-variate Boolean interpolation, J. Approx. Theory 34 (1982) 99–114.

    Article  MATH  MathSciNet  Google Scholar 

  11. F.-J. Delvos and W. Schempp, Boolean Methods in Interpolation and Approximation, Pitman Research Notes in Mathematics Series, Vol. 230 (Longman, Essex, 1989).

    MATH  Google Scholar 

  12. M.G. Duffy, Quadrature over a pyramid or cube of integrands with a singularity at a vertex, SIAM J. Numer. Anal. 19 (1982) 1260–1262.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Elhay and J. Kautsky, A method for computing quadratures of the Kronrod–Patterson type, Austral. Comput. Sci. Comm. 6(1) (1984) 15.1–15.8.

    Google Scholar 

  14. S. Elhay and J. Kautsky, Generalized Kronrod–Patterson-type imbedded quadratures, Appl. Math. 37(2) (1992) 81–103.

    MATH  MathSciNet  Google Scholar 

  15. K. Frank and S. Heinrich, Computing discrepancies of Smolyak quadrature rules, J. Complexity 12 (1996).

  16. J. Garcke, Berechnung der kleinsten Eigenwerte der stationären Schroedingergleichung mit der Kombinationstechnik, Master’s thesis, Institut für Angewandte Mathematik, Universität Bonn (1998), to appear.

  17. A. Genz, A package for testing multiple integration subroutines, in: Numerical Integration, eds. P. Keast and G. Fairweather (Kluwer Academic Publishers, Dordrecht, 1987) pp. 337–340.

    Google Scholar 

  18. A. Genz and A.A. Malik, An adaptive algorithm for numerical integration over an n-dimensional rectangular region, J. Comput. Appl. Math. 6 (1980) 295–302.

    Article  MATH  Google Scholar 

  19. T. Gerstner, Adaptive hierarchical methods for landscape representation and analysis, in: Proc. of the Workshop on Process Modelling and Landform Evolution, eds. S. Hergarten and H. Neugebauer (Springer, Berlin, 1998).

    Google Scholar 

  20. G.H. Golub and J. Kautsky, Calculation of Gauss quadratures with multiple free and fixed knots, Numer. Math. 41 (1983) 147–163.

    Article  MATH  MathSciNet  Google Scholar 

  21. W.J. Gordon, Blending function methods of bivariate and multivariate interpolation and approximation, SIAM J. Numer. Anal. 8 (1971) 158–177.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Griebel, A parallelizable and vectorizable multi-level algorithm on sparse grids, in: Parallel Algorithms for Partial Differential Equations, ed. W. Hackbusch, Notes on Numerical Fluid Mechanics, Vol. 31 (Vieweg, Braunschweig, 1991).

    Google Scholar 

  23. M. Griebel, The combination technique for the sparse grid solution of PDEs on multiprocessor machines, Parallel Process. Lett. 2(1) (1992) 61–70.

    Article  MathSciNet  Google Scholar 

  24. M. Griebel, P. Oswald and T. Schiekofer, Sparse grids for boundary integral equations, Numer. Math. (1998), to appear.

  25. M. Griebel, M. Schneider and C. Zenger, A combination technique for the solution of sparse grid problems, in: Iterative Methods in Linear Algebra, eds. R. Bequwens and P. de Groen (Elsevier, North-Holland, 1992) pp. 263–281.

    Google Scholar 

  26. M. Griebel and G. Zumbusch, Adaptive sparse grids for hyperbolic conservation laws, in: Proc. of the 7th Internat. Conf. on Hyperbolic Problems (Birkhäuser, Basel, 1998).

    Google Scholar 

  27. K. Hallatschek, Fouriertransformation auf dünnen Gittern mit hierarchischen Basen, Numer. Math. 63 (1992) 83–97.

    Article  MATH  MathSciNet  Google Scholar 

  28. N. Heuer, M. Maischak and E.P. Stephan, The hp-version of the boundary element method for screen problems, Numer. Math. (1998), submitted.

  29. M. Kac, On some connections between probability theory and differential and integral equations, in: Proc. of the 2nd Berkeley Symp. on Math. Stat. Prob., ed. J. Neyman (University of California Press, Berkley, 1951).

    Google Scholar 

  30. A.S. Kronrod, Nodes and Weights of Quadrature Formulas (Consultants Bureau, New York, 1965).

    MATH  Google Scholar 

  31. H.N. Mhaskar, Neural networks and approximation theory, Neural Networks 9 (1996) 711–722.

    Article  Google Scholar 

  32. G. Monegato, Stieltjes polynomials and related quadrature rules, SIAM Rev. 24(2) (1982) 137–158.

    Article  MATH  MathSciNet  Google Scholar 

  33. W.J. Morokoff and R.E. Caflisch, Quasi-Monte Carlo integration, J. Comput. Phys. 122 (1995) 218–230.

    Article  MATH  MathSciNet  Google Scholar 

  34. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods (SIAM, Philadelphia, PA, 1992).

    MATH  Google Scholar 

  35. E. Novak and K. Ritter, Global optimization using hyperbolic cross points, in: State of the Art in Global Optimization, eds. C.A. Floudas and P.M. Pardalos (Kluwer Academic, Dordrecht, 1996) pp. 19–33.

    Google Scholar 

  36. E. Novak and K. Ritter, High dimensional integration of smooth functions over cubes, Numer. Math. 75 (1996) 79–97.

    Article  MATH  MathSciNet  Google Scholar 

  37. E. Novak and K. Ritter, The curse of dimension and a universal method for numerical integration, in: Multivariate Approximation and Splines, eds. G. Nürnberger, J.W. Schmidt and G. Walz (1997).

  38. E. Novak and K. Ritter, Simple cubature formulas for d-dimensional integrals with high polynomial exactness and small error, Report, Institut für Mathematik, Universität Erlangen–Nürnberg (1997).

  39. E. Novak, K. Ritter and A. Steinbauer, A multiscale method for the evaluation of Wiener integrals, J. Approx. Theory (1998), to appear.

  40. S. Paskov, Average case complexity of multivariate integration for smooth functions, J. Complexity 9 (1993) 291–312.

    Article  MATH  MathSciNet  Google Scholar 

  41. S. Paskov and J.F. Traub, Faster valuation of financial derivatives, J. Portfolio Management 22 (1995) 113–120.

    Article  Google Scholar 

  42. T.N.L. Patterson, The optimum addition of points to quadrature formulae, Math. Comp. 22 (1968) 847–856.

    Article  MATH  Google Scholar 

  43. T.N.L. Patterson, Algorithm 672: Generation of interpolatory quadrature rules of the highest degree of precision with preassigned nodes for general weight functions, ACM Trans. Math. Software 15(2) (1989) 137–143.

    Article  MATH  MathSciNet  Google Scholar 

  44. T.N.L. Patterson, Modified optimal quadrature extensions, Numer. Math. 64 (1993) 511–520.

    Article  MATH  MathSciNet  Google Scholar 

  45. S.V. Pereverzev, An estimate of the complexity of the approximate solution of Fredholm equations of the second kind with differentiable kernels, Ukrainian Math. J. 141(2) (1989) 1225–1227.

    Article  Google Scholar 

  46. R. Piessens and M. Branders, A note on the optimum addition of abscissas to quadrature formulas of Gauss and Lobatto type, Math. Comp. 28 (1974) 135–140, 344–347.

    Article  MATH  MathSciNet  Google Scholar 

  47. I. Robinson and A. Begumisa, Suboptimal Kronrod extension formulae for numerical quadrature, Numer. Math. 58 (1991) 807–818.

    MATH  MathSciNet  Google Scholar 

  48. I.H. Sloan and S. Joe, Lattice Methods for Multiple Integration (Oxford University Press, Oxford, 1994).

    MATH  Google Scholar 

  49. S.A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk SSSR 4 (1963) 240–243.

    Google Scholar 

  50. F. Sprengel, Periodic interpolation and wavelets on sparse grids, Numer. Algorithms 17 (1998) 147–169.

    Article  MATH  MathSciNet  Google Scholar 

  51. V.N. Temlyakov, Approximation of Periodic Functions (Nova Science, New York, 1994).

    MATH  Google Scholar 

  52. J.F. Traub, G.W. Wasilkowski and H. Wózniakowski, Information-Based Complexity (Academic Press, New York, 1988).

    MATH  Google Scholar 

  53. P. Van Dooren and L. De Ridder, An adaptive algorithm for numerical integration over an n-dimensional cube, J. Comput. Appl. Math. 2 (1976) 207–217.

    Article  MATH  Google Scholar 

  54. G. Wahba, Interpolating surfaces: High order convergence rates and their associated design with applications to X-ray image reconstruction, Report, Department of Statistics, University of Wisconsin, Madison (1978).

    Google Scholar 

  55. G.W. Wasilkowski and H. Wózniakowski, Explicit cost bounds of algorithms for multivariate tensor product problems, J. Complexity 11 (1995) 1–56.

    Article  MATH  MathSciNet  Google Scholar 

  56. C. Zenger, Sparse grids, in: Parallel Algorithms for Partial Differential Equations, ed. W. Hackbusch, Notes on Numerical Fluid Mechanics, Vol. 31 (Vieweg, Braunschweig, 1991).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerstner, T., Griebel, M. Numerical integration using sparse grids. Numerical Algorithms 18, 209–232 (1998). https://doi.org/10.1023/A:1019129717644

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019129717644

Navigation