Skip to main content
Log in

Stabilization of algebraic multilevel iteration methods; additive methods

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

There exist two main versions of preconditioners of algebraic multilevel type, the additive and the multiplicative methods. They correspond to preconditioners in block diagonal and block matrix factorized form, respectively. Both can be defined and analysed as recursive two-by-two block methods. Although the analytical framework for such methods is simple, for many finite element approximations it still permits the derivation of the strongest results, such as optimal, or nearly optimal, rate of convergence and optimal, or nearly optimal order of computational complexity, when proper recursive global orderings of node points have been used or when they are applied for hierarchical basis function finite element methods for elliptic self-adjoint equations and stabilized in a certain way. This holds for general elliptic problems of second order, independent of the regularity of the problem, including independence of discontinuities of coefficients between elements and of anisotropy. Important ingredients in the methods are a proper balance of the size of the coarse mesh to the finest mesh and a proper solver on the coarse mesh. This paper presents in a survey form the basic results of such methods and considers in particular additive methods. This method has excellent parallelization properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Axelsson, On multigrid methods of the two-level type, in: Multigrid Methods, Proceedings, Köln-Porz (1981), eds. W. Hackbusch and U. Trottenberg, Lecture Notes in Mathematics, Vol. 960 (Springer, Berlin, 1982) pp. 352–367.

    Google Scholar 

  2. O. Axelsson, An algebraic framework for hierarchical basis function multilevel methods or the search for ‘optimal’ preconditioners, in: Iterative Methods for Large Linear Systems, eds. D.R. Kincaid and L.J. Hayes (Academic Press, New York, 1990) pp. 7–40.

    Google Scholar 

  3. O. Axelsson, The stabilized V-cycle method, J. Comput. Appl. Math. 74 (1996) 33–40.

    Article  MATH  MathSciNet  Google Scholar 

  4. O. Axelsson, Stabilization of algebraic multilevel iteration methods; additive methods, in: AMLI '96, Proc. of the Conf. on Algebraic Multilevel Iteration Methods with Applications, eds. O. Axelsson and B. Polman, University of Nijmegen, The Netherlands (June 13–15, 1996) pp. 49–62.

    Google Scholar 

  5. O. Axelsson and V.A. Barker, Finite Element Solution of Boundary Value Problems. Theory and Computation (Academic Press, Orlando, FL, 1984).

    Google Scholar 

  6. O. Axelsson and V. Eijkhout, The nested recursive two-level factorization method for nine-point difference matrices, SIAM J. Sci. Statist. Comput. 12 (1991) 1373–1400.

    Article  MATH  MathSciNet  Google Scholar 

  7. O. Axelsson and I. Gustafsson, Preconditioning and two-level multigrid methods of arbitrary degree of approximation, Report 8120 (July 1981), Department of Mathematics, University of Nijmegen, The Netherlands. Later published in Math. Comp. 40 (1983) 219–242.

    Google Scholar 

  8. O. Axelsson and M. Neytcheva, Algebraic multilevel iteration method for Stieltjes matrices, Numer. Linear Algebra Appl. 1 (1994) 213–236.

    Article  MATH  MathSciNet  Google Scholar 

  9. O. Axelsson and M. Neytcheva, Scalable algorithms for the solution of Navier's equations of elasticity, J. Comput. Appl. Math. 63 (1995) 149–178.

    Article  MATH  MathSciNet  Google Scholar 

  10. O. Axelsson, M. Neytcheva and B. Polman, The bordering method as a preconditioning method, Vestnik Moscov. Univ. Ser. 15 Vichisl. Mat. Kybernet. (1995) 3–24.

  11. O. Axelsson and A. Padiy, On the additive version of the algebraic multilevel iteration method for anisotropic elliptic problems, SIAM J. Sci. Comput., to appear.

  12. O. Axelsson and P. Vassilevski, A survey of multilevel preconditioned iterative methods, BIT 29 (1989) 769–793.

    Article  MATH  MathSciNet  Google Scholar 

  13. O. Axelsson and P. Vassilevski, Algebraic multilevel preconditioning methods I, Numer. Math. 56 (1989) 157–177.

    Article  MATH  MathSciNet  Google Scholar 

  14. O. Axelsson and P. Vassilevski, Algebraic multilevel preconditioning methods II, SIAM J. Numer. Anal. 27 (1990) 1569–1590.

    Article  MATH  MathSciNet  Google Scholar 

  15. O. Axelsson and P. Vassilevski, Asymptotic work estimates for AMLI methods, Appl. Numer. Math. 7 (1991) 437–451.

    Article  MATH  MathSciNet  Google Scholar 

  16. O. Axelsson and P.S. Vassilevski, Variable step multilevel preconditioning methods, I: Self-adjoint and positive definite elliptic problems, Numer. Linear Algebra Appl. 1 (1994) 75–101.

    Article  MATH  MathSciNet  Google Scholar 

  17. Z. Bai and O. Axelsson, A unified framework for the construction of various algebraic multilevel preconditioning methods, in: AMLI '96, Proc. of the Conf. on Algebraic Multilevel Iteration Methods with Applications, eds. O. Axelsson and B. Polman, University of Nijmegen, The Netherlands (June 13–15, 1996) pp. 63–76.

    Google Scholar 

  18. N.S. Bakhvalov, On the convergence of a relaxation method with natural constraints on the elliptic operator, Comput. Math. Math. Phys. 6 (1966) 101–135.

    Article  Google Scholar 

  19. R. Bank and T. Dupont, Analysis of a two-level scheme for solving finite element equations, Report (NA-159), Center for Numerical Analysis, The University of Texas at Austin (1980).

  20. D. Braess, The contraction number of a multigrid method for solving the Poisson equation, Numer. Math. 17 (1981) 387–404.

    Article  MathSciNet  Google Scholar 

  21. J.H. Bramble, Multigrid Methods, Pitman Research Notes in Mathematics Series, Vol. 294 (Longman, New York, 1993).

    Google Scholar 

  22. A. Brandt, Multi-level adaptive solution to boundary-value-problems, Math. Comp. 31 (1977) 333–390.

    Article  MATH  MathSciNet  Google Scholar 

  23. R.P. Fedorenko, A relaxation method for solving elliptic difference equations, Comput. Math. Math. Phys. 1 (1962) 1092–1096.

    Article  Google Scholar 

  24. W. Hackbusch, Multigrid convergence theory, in: Multigrid Methods, Proceedings, Köln-Porz (1981), eds. W. Hackbusch and U. Trottenberg, Lecture Notes in Mathematics, Vol. 960 (Springer, Berlin, 1982) pp. 177–219.

    Google Scholar 

  25. W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations (Springer, New York, 1994).

    Google Scholar 

  26. Y. Kuznetsov, Multigrid domain decomposition methods for elliptic problems, Comput. Methods Appl. Mech. Engrg. 75 (1989) 185–193.

    Article  MATH  MathSciNet  Google Scholar 

  27. J.F. Maitre and F. Musy, The contraction number of a class of two-level methods; An exact evaluation for some finite element subspaces and model problems, in: Multigrid Methods, Proceedings, Köln-Porz (1981), eds. W. Hackbusch and U. Trottenberg, Lecture Notes in Mathematics, Vol. 960 (Springer, Berlin, 1982) pp. 535–544.

    Google Scholar 

  28. P. Vassilevski, Multilevel preconditioning matrices and multigrid V-cycle methods, in: Proc. of the 4th GAMM-Seminar, Kiel (January 22–24, 1988), ed. W. Hackbusch, Notes on Numerical Fluid Mechanics, Vol. 23 (Vieweg, Braunschweig, 1988) pp. 200–208.

    Google Scholar 

  29. P. Vassilevski, Hybrid V-cycle algebraic multilevel preconditioners, Math. Comp. 58 (1992) 489–512.

    Article  MATH  MathSciNet  Google Scholar 

  30. H. Yserentant, On the multilevel splitting of finite element spaces, Numer. Math. 49 (1986) 379–412.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Axelsson, O. Stabilization of algebraic multilevel iteration methods; additive methods. Numerical Algorithms 21, 23–47 (1999). https://doi.org/10.1023/A:1019136808500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019136808500

Navigation