Skip to main content
Log in

Lubrication using a microstructurally engineered oxide: performance and mechanisms

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Oxide coatings have the potential to lubricate over a wide range of environmental conditions. However, oxides are typically brittle, form abrasive wear debris, and have high friction. ZnO is no exception; hot-pressed 1–2 µm ZnO has a friction coefficient of about 0.6 and causes extensive wear on steel counterfaces. Microstructural engineering may be used to permit plastic deformation and the formation of lubricious transfer films. The work presented here focuses on controlling the microstructure and chemistry within ZnO to provide low-friction and long-life coatings (e.g., µ=0.1−0.2, 1M+ sliding cycles). Coatings having a (0001) columnar texture with good crystallinity along the c-axis wear quickly and generate substantial wear debris. Depositions that create a (0001) texture with a mosaic substructure within the columns deform plastically. Here, nanocrystalline structures may enhance grain boundary sliding and contribute to plastic deformation and low friction. Dislocation motion within ZnO is enhanced by oxygen adsorption, which may further reduce friction by lowering shear strength. In addition, it is likely that defects arising from oxygen deficiency and the high surface-to-volume ratio of nanostructures, promote adsorption of water and/or oxygen. The adsorbed species can reduce friction through passivation of dangling or strained bonds. The complex interaction of mechanical and surface chemical effects result in millions of dry sliding cycles on nanostructured coatings in 50% RH air. In addition, the coatings have low friction in vacuum. Coating characterization and performance are discussed and a mechanism to explain the tribological properties is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.L. McMurtrey, NASA TM-86556 (1985).

  2. H.E. Sliney, Tribol. Int. 15 (1982) 303.

    Article  CAS  Google Scholar 

  3. D.J. Boes, IEEE Trans. Aerospace AS-2 (1964) 457; M.N. Gardos, in: New Directions in Tribology, 1st World Tribology Congress, 8-12 September 1997, London (Mech. Eng. Publ. LTD., London, 1997) p. 229.

  4. B. Bhushan and B.K. Gupta, Handbook of Tribological Materials, Coatings, and Surface Treatments (McGraw-Hill, New York, 1991).

    Google Scholar 

  5. W.R. Ott and M.G. McLaren, in: Proc. 2nd Int. Conf. on Thermal Analysis (Worcester, MA, 1968).

  6. M.B. Peterson and R.L. Johnson, Lubr. Eng. 13 (1957) 203.

    CAS  Google Scholar 

  7. M.B. Peterson, S.F. Murray and J.J. Florek, ASLE Trans. 2 (1960) 225.

    CAS  Google Scholar 

  8. H.E. Sliney and R.L. Johnson, NACA RM, E57B15 (1957) 1–25.

  9. J.P. King and N.H. Forster, AIAA Paper 90-2044, presented at AIAA, SAE, ASME, and ASEE Joint Propulsion 26th Conf., Orlando, 16- 18 July (1990).

  10. M.N. Gardos, Tribol. Trans. 31 (1988) 427.

    CAS  Google Scholar 

  11. M.N. Gardos, Tribol. Trans. 33 (1990) 209.

    CAS  Google Scholar 

  12. M.B. Peterson, S.J. Calabrese and B. Stupp, Lubrication With Naturally Occurring Double Oxide Films, NTIS ADA 124248, US Dept. of Commerce (1982).

  13. M.B. Peterson, S.Z. Li and S.F. Murray, Argonne National Lab., ANL/OTM/CR-5 (1994).

  14. K. Strong and J.S. Zabinski, Thin Solid Films (1999), submitted.

  15. M. Woydt, A. kopp, I. Dorfel and K. Witke, Tribol. Trans. 42 (1999) 21.

    CAS  Google Scholar 

  16. H.E. Sliney, J. Vac. Sci. Technol. A 4 (1986) 2629.

    Article  CAS  Google Scholar 

  17. C. DellaCorte and H.E. Sliney, ASLE Trans. 30 (1987) 77.

    CAS  Google Scholar 

  18. C. DellaCorte and B.J. Edmonds, NASA TM-107056 (1995).

  19. C. DellaCorte and J.A. Fellenstein, Tribol. Trans. 40 (1997) 639.

    CAS  Google Scholar 

  20. J.S. Zabinski, S.V. Prasad and N.T. McDevitt, Advanced Solid Lubricant Coatings for Aerospace Systems, in: Proc. NATO/AGARD Conf., Paper No. AGARD-CP-589, Sesimbra, Portugal, 6-10 May 1996.

  21. J.S. Zabinski, M.S. Donley, V.J. Dyhouse and N.T. McDevitt, Thin Solid Films 214 (1992) 156.

    Article  CAS  Google Scholar 

  22. S.D. Walck, J.S. Zabinski, N.T. McDevitt and J.E. Bultman, Thin Solid Films 305 (1997) 130.

    Article  CAS  Google Scholar 

  23. J.S. Zabinski and M.S. Donley, in: Pulsed Laser Deposition of Thin Films, eds. D.B. Chrisey and G.K. Graham (Wiley, New York, 1994).

    Google Scholar 

  24. A.M. Petlyuk, O.V. Lazovskaya and N.N. Shelentsova, Vestnik Mashinostroenija 3 (1989) 62.

    Google Scholar 

  25. P. Niederhauser, H.E. Hinterman and M. Maillat, Thin Solid Films 108 (1983) 209.

    Article  Google Scholar 

  26. J.S. Zabinski, J.E. Florkey, S.D. Walck, J.E. Bultman and N.T. McDevitt, Surf. Coat. Technol. 76-77 (1995) 400.

    CAS  Google Scholar 

  27. A.A. Voevodin, J. Bultman and J.S. Zabinski, Surf. Coat. Technol. 107 (1998) 12.

    Article  CAS  Google Scholar 

  28. A.A. Voevodin and J.S. Zabinski, Surf. Coat. Technol. 116-119 (1999) 36.

    Article  Google Scholar 

  29. J.S. Zabinski and A.A Voevodin, Tribol. Lett. 6 (1999) 75.

    Article  Google Scholar 

  30. H. Glieter, Nanocrystalline Materials, Progress in Materials Science, Vol. 13 (Pergamon, Oxford, 1989) pp. 223–315.

    Google Scholar 

  31. J. Karch, R. Birringer and H. Glieter, Nature 330 (1987) 556–558.

    Article  CAS  Google Scholar 

  32. J. Schiotz, F.D. Di Tolla and K.W. Jacobsen, Nature 391 (1998) 561.

    Article  Google Scholar 

  33. V.E. Henrich and P.A. Cox, The Surface Science of Metal Oxides (Cambridge Univ. Press, Cambridge, 1994).

    Google Scholar 

  34. L. Carlsson, J. Appl. Phys. 42 (1971) 676.

    Article  CAS  Google Scholar 

  35. L. Carlsson, J. Appl. Phys. 41 (1970) 1652.

    Article  CAS  Google Scholar 

  36. J.S. Ahearn, J.J. Mills and A.R.C. Westwood, J. Appl. Phys. 49 (1978) 614.

    Article  CAS  Google Scholar 

  37. J.S. Ahearn, J.J Mills and A.R.C. Westwood, J. Appl. Phys. 49 (1978) 96.

    Article  CAS  Google Scholar 

  38. N. Fujimura, T. Nishihara, S. Goto, J. Xu and T. Ito, J. Cryst. Growth 130 (1993) 269.

    Article  CAS  Google Scholar 

  39. J.S. Zabinski, J. Corneille, S.V. Prasad, N.T. McDevitt and J.B. Bultman, J. Mater. Sci. 32 (1997) 5313.

    Article  CAS  Google Scholar 

  40. S.V. Prasad and J.S. Zabinski, Wear 203-204 (1997) 498.

    Article  CAS  Google Scholar 

  41. Y.J. Kim and H.J. Kim, Mater. Lett. 21 (1994) 351.

    Article  CAS  Google Scholar 

  42. S. Takada, J. Appl. Phys. 73 (1993) 4739.

    Article  CAS  Google Scholar 

  43. T. Hata, E. Noda, O. Morimoto and T. Hada, Appl. Phys. Lett. 37 (1980) 633.

    Article  CAS  Google Scholar 

  44. T. Yamamoto, T. Shiosaka and A. Kawabata, J. Appl. Phys. 51 (1980) 3113.

    Article  CAS  Google Scholar 

  45. N. Fujimura, T. Nishihara, S. Goto, J. Xu and T. Ito, J. Cryst. Growth 130 (1993) 269.

    Article  CAS  Google Scholar 

  46. W. Gopel and U. Lampe, Phys. Rev. B 22 (1980) 6447.

    Article  Google Scholar 

  47. Y. Morninaga, K. Sakuragi, N. Fujimura and T. Ito, J. Cryst. Growth 174 (1997) 691.

    Article  Google Scholar 

  48. M.J. Mayo, R.W. Siegel, Y.X. Liao and W.D. Nix, J. Mater. Res. 7 (1992) 973.

    CAS  Google Scholar 

  49. S.V. Prasad, S.D. Walck and J.S. Zabinski, Thin Solid Films 360 (2000) 107.

    Article  CAS  Google Scholar 

  50. J.J. Nainaparampil, J.S. Zabinski and S.V. Prasad, J. Vac. Sci. Technol. A 17 (1999) 1787.

    Article  CAS  Google Scholar 

  51. A.A. Voevodin, M.A. Capano, A.J. Safriet, M.S. Donley and J.S. Zabinski, Appl. Phys. Lett. 69 (1996) 188.

    Article  CAS  Google Scholar 

  52. G.J. Exarhos and S.K. Sharma, Thin Solid Films 270 (1995) 27.

    Article  CAS  Google Scholar 

  53. C.R. Aita, A.J. Purdes, R.J. Lad and P.D. Funkenbuch, J. Appl. Phys. 51 (1980) 5533.

    Article  CAS  Google Scholar 

  54. G.E. Dieter, Mechanical Metallurgy (McGraw-Hill, New York, 1961) p. 123.

    Google Scholar 

  55. R.W. Cahn, Impurities and Imperfections (Am. Soc. Metals, Metals Park, OH, 1955).

    Google Scholar 

  56. D.H. Zhang and D.E. Brodie, Thin Solid Films 261 (1995) 334.

    Article  CAS  Google Scholar 

  57. D.H. Zhang, Mater. Chem. Phys. 45 (1996) 248.

    Article  CAS  Google Scholar 

  58. W. Gopel, J. Vac. Sci. Technol. 15 (1978) 1298.

    Article  Google Scholar 

  59. F.P. Bowden and D. Tabor, The Friction and Lubrication of Solids (Clarendon Press, Oxford, 1986).

    Google Scholar 

  60. I.L. Singer and H.M. Pollock, Fundamentals of Friction: Macroscopic and Microscopic Processes (Kluwer Academic, Dordrecht, 1992).

    Google Scholar 

  61. V.R. Regel, N.L. Sizova, M.A. Chernysheva, S.I. Dohnovskaya, I.P. Kuzmina, O.A. Lazaarevskaya and V.A. Nikitenko, Cryst. Res. Technol. 17 (1982) 1579.

    CAS  Google Scholar 

  62. A. Erdemir, M. Switala, R. Wei and P. Wilbur, Surf. Coat. Technol. 50 (1991) 17.

    Article  CAS  Google Scholar 

  63. A.A. Voevodin, A.W. Phelps, M.S. Donley and J.S. Zabinski, Diamond Relat. Mater. 5 (1996) 1264.

    Article  CAS  Google Scholar 

  64. S. Kittaka, T. Sasaki and N. Fukuhara, Langmuir 8 (1992) 2598.

    Article  CAS  Google Scholar 

  65. M. Casarin, C. Maccato and A. Vittadini, Surf. Sci. 377-379 (1997) 587.

    Article  CAS  Google Scholar 

  66. J.B.L. Martins, V. Moliner, J. Andres, E. Longo and C.A. Taft, J. Mol. Struct. 330 (1995) 347.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabinski, J., Sanders, J., Nainaparampil, J. et al. Lubrication using a microstructurally engineered oxide: performance and mechanisms. Tribology Letters 8, 103–116 (2000). https://doi.org/10.1023/A:1019187202237

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019187202237

Navigation