Skip to main content
Log in

Detection of the microbial activity of aerobic heterotrophic, anoxic heterotrophic and aerobic autotrophic activated sludge organisms with an electrochemical sensor

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The microbial activity of aerobic heterotrophic, anoxic heterotrophic and aerobic autotrophic microorganisms in biological wastewater treatment was determined by means of an electrochemical bioactivity sensor. The development of the sensor resulted in a system which can determine the microbial activities that are relevant for effective wastewater treatment. The signals of the sensor system are proportional to the substrate degradation and it can show inhibiting effects on the biomass. The most important advantages of the system are: it is independent of O2 consumption, the three most important types of metabolic activities in wastewater technology can be measured with one sensor, furthermore the measurement is suitable for automation and it is on-line. The result is a potential for the optimization of processes based on microbial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bongards M (1998) Process for controlling the nitrification and denitrification phase. US Patent 6.093.322.

  • Bourgeois W, Burgess JE, Stuetz RM (2001) On-line monitoring of wastewater quality: a review. J. Chem. Technol. Biotechnol. 76: 337-348.

    Google Scholar 

  • Charpentier J, Martin G, Wacheux H, Gilles P (1998) ORP regulation and activated sludge: 15 years of experience. Water Sci. Tech. 38: 197-208.

    Google Scholar 

  • DIN 38412-24, Ausgabe:1981-04: Deutsche Einheitsverfahren zur Wasser-, Abwasser-und Schlammuntersuchung; Testverfahren mit Wasserorganismen (Gruppe L); Bestimmung der biologischen Abbaubarkeit unter Anwendung spezieller Analysenverfahren (L 24).

  • Evans MR, Jordinson GM, Rawson DM, Rogerson JG (1998) Biosensors for the measurement of toxicity of wastewaters to activated sludge. Pestic. Sci. 54: 447-452.

    Google Scholar 

  • Guwy AJ, Buckland H, Hawkes FR, Hawkes DL (1998) Active biomass in activated sludge: comparison of respirometry with catalase activity measured using an on-line monitor. Water Res. 32: 3705-3709.

    Google Scholar 

  • Hawkes DL, Hawkes FR, Dinsdale R (1996) Determining the organic content of fluid. UGSC Patent. International Publication No. WO 96/18896.

  • Isaacs S, Henze M(1994) Fluorescence monitoring of an alternating activated sludge process. Water Sci. Tech. 30: 229-238.

    Google Scholar 

  • Isaacs S, Mah T, Maneshin SK (1998) Automatic monitoring of denitrification rates and capacities in activated sludge processes using fluorescence or redox potential. Water Sci. Tech. 37: 121-129.

    Google Scholar 

  • Kabouris JC (1999) Modeling, instrumentation, automation, and optimization of wastewater treatment facilities. Water Environ. Res. 71: 729-736.

    Google Scholar 

  • Koch FA, OldhamWK (1985) Oxidation-reduction potential-a tool for monitoring control and optimisation of biological nutrient removal systems. Water Sci. Tech. 17: 259-281.

    Google Scholar 

  • König A, Riedel K, Metzger JW (1998) A microbial sensor for detecting inhibitors of nitrification in wastewater. Biosens. Bioelectron. 13: 869-874.

    Google Scholar 

  • Kreysa G, Sell D, Krämer P (1990) Bioelectrochemical fuel cells. Ber. Bunsenges. Phys. Chem. 94: 1042-1045.

    Google Scholar 

  • Lee SM, Jung JY, Chung YC (2000) Measurement of ammonia inhibition of microbial activity in biological wastewater treatment process using dehydrogenase assay. Biotechnol. Lett. 22: 991-994.

    Google Scholar 

  • Leifheit M, Mohr KH (2001) Automatic measurement of the inhibitory effect of toxic effluents on process microorganisms in wastewater treatment. Eng. Life Sci. 1: 111-114.

    Google Scholar 

  • Lynggaard-Jensen A (1999) Trends in monitoring of waste water systems. Talanta 50: 707-716.

    Google Scholar 

  • Miksch K (1985) The Influence of TTC-concentration on the determination of the activity of activated sludge. Acta Hydrochim. Hydrobiol. 12: 67-73.

    Google Scholar 

  • Osbild D, Vasseur P (1998) Microbiological sensors for the monitoring of water quality. In: Colin F, Quevauviller Ph, eds. Monitoring of Water Quality. Amsterdam: Elsevier, pp. 38-48.

    Google Scholar 

  • Pagga U, Günthner W (1981) The BASF toximeter-a helpful instrument to control and monitor biological waste water treatment plants. Water Sci. Tech. 13: 233-238.

    Google Scholar 

  • Pfenning N, Trüper HG (1981) In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG, eds. The Prokaryotes, Vol. 1. Berlin: Springer-Verlag, pp. 279-289.

    Google Scholar 

  • Schmidt I, Gries T, Willuweit T (1999) Nitrifikation-Grundlagen des Stoffwechsels und Probleme bei der Nutzung von Ammoniakoxidanten. Acta Hydrochim. Hydrobiol. 27: 121-135.

    Google Scholar 

  • Spanjers H, Vanrolleghem P, Olsson G, Dold P (1996) Respirometry in control of the activated sludge process. Water Sci. Tech. 34: 117-126.

    Google Scholar 

  • Vanrolleghem PA, Kong Z, Rombouts G, Verstraete W (1994) An on-line respirographic biosensor for the characterization of load and toxicity of wastewaters. J. Chem. Tech. Biotechnol. 59: 321-333.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holtmann, D., Sell, D. Detection of the microbial activity of aerobic heterotrophic, anoxic heterotrophic and aerobic autotrophic activated sludge organisms with an electrochemical sensor. Biotechnology Letters 24, 1313–1318 (2002). https://doi.org/10.1023/A:1019871912731

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019871912731

Navigation