Skip to main content
Log in

Catalysis of Gold Nanoparticles Deposited on Metal Oxides

  • Published:
CATTECH

Abstract

Gold in bulk is chemically inert and has often been regarded to be poorly active as a catalyst. However, when gold is small enough—with particle diameters below 10 nm—it turns out to be surprisingly active for many reactions, such as CO oxidation and propylene epoxidation. This is especially so at low temperatures. Here, a summary of the catalysis of Au nanoparticles deposited on base metal oxides is presented. The catalytic performance of Au is defined by three major factors: contact structure, support selection, and particle size, the first of which being the most important because the perimeter interfaces around Au particles act as the site for reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. G. I. Panov, CATTECH, 4 (2000) 18.

    Google Scholar 

  2. P. Forzatti, Appl. Catal. A: General, 222 (2001) 221.

    Google Scholar 

  3. H. Topsøe, B. S. Clausen, and F. E. Massoth, Hydrotreating Catalysis, Science and Technology, Springler, Berlin, 1996.

    Google Scholar 

  4. V. Ponec and G. C. Bond, Catalysis by Metals and Alloys, Elsevier, Amsterdam, 1996.

    Google Scholar 

  5. M. Iwamoto, Stud. Surf. Sci. Catal., 130 (2000) 23.

    Google Scholar 

  6. A. G. Sault, R. J. Madix, and C. T. Campbell, Surf. Sci., 169 (1986) 347.

    Google Scholar 

  7. N. Saliba, D. H. Parker, and B. E. Koel, Surf. Sci., 410 (1998) 270.

    Google Scholar 

  8. J. Wang and B. E. Koel, J. Phys. Chem. A102 (1998) 8573.

    Google Scholar 

  9. B. Hammer and J. K. Nø rskov, Nature, 376 (1995) 238.

    Google Scholar 

  10. K. Tanaka, T. Hayashi, M. Haruta, Interf. Sci. Material Interconnection, Proc. JIMIS-8, Jpn. Inst. Metals., 1996, pp.547–550.

  11. Ph. Buffet and J-P. Borel, Phys. Rev. A, 13 (1976) 2287.

    Google Scholar 

  12. G. C. Bond and P. A. Sermon, Gold Bull., 6 (1973) 102.

    Google Scholar 

  13. G. C. Bond and P. A. Sermon, J. C. S. Chem. Comm., (1973) 444.

  14. D. Y. Cha and G. Parravano, J. Catal. 18 (1970) 200.

    Google Scholar 

  15. S. Galvano and G. Parravano, J. Catal. 55 (1978) 178.

    Google Scholar 

  16. J. Schwank, Gold Bull., 16 (4) (1983) 103.

    Google Scholar 

  17. M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, J. Catal., 115 (1989) 301.

    Google Scholar 

  18. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. Delmon, J. Catal., 144 (1993) 175.

    Google Scholar 

  19. M. Haruta, Catal. Today, 36 (1997) 153.

    Google Scholar 

  20. M. Haruta, Catal. Surveys of Japan, 1 (1997) 61.

    Google Scholar 

  21. G. C. Bond and D. T. Thompson, Catal. Rev. Sci. Eng., 41 (1999) 319.

    Google Scholar 

  22. Osaka National Research Institute, Activity Report No. 393 (1999).

  23. M. Haruta and M. Datè , Appl. Catal. A: General, 222 (2001) 427.

    Google Scholar 

  24. M. Haruta, S. Tsubota, and M. Okumura, in Advances in Catalyst Preparation (Japanese), eds. Y. Ono et al., Association for the Promotion of Catalyst Preparation Chemistry, Tokyo, 2000, pp39-50.

    Google Scholar 

  25. T. Kobayashi, M. Haruta, S. Tsubota, and H. Sano, Sensors and Actuators, B1 (1990) 222.

    Google Scholar 

  26. S. Tsubota, M. Haruta, T. Kobayashi, A. Ueda, and Y. Nakahara, Stud. Surf. Sci.Catal., 63 (1991) 695.

    Google Scholar 

  27. M. Okumura, K. Tanaka, A. Ueda, and M. Haruta, Solid State Ionics, 95 (1997) 143.

    Google Scholar 

  28. M. Okumura, S. Tsubota, M. Iwamoto, and M. Haruta, Chem. Lett., (1998) 315.

  29. M. Shibata, N. Kuwata, T. Masumoto, and H. Kimura, Chem. Lett., (1985) 1605.

  30. Y. Yuan, A. P. Kozlova, K. Asakura, H. Wan, K. Tsai, and Y. Iwasawa, J. Catal., 170 (1997) 191.

    Google Scholar 

  31. M. Okumura and M. Haruta, Chem. Lett., (2000) 396.

  32. T. Akita, K. Tanaka, S. Tsubota, and M. Haruta, J. Electron Microscopy, 49 (2000) 657.

    Google Scholar 

  33. M. Ichikawa, T. Akita, M. Okumura, K. Tanaka, and M. Haruta, Proc. 7th Intern. Symp. Advanced Physical Fields, Tsukuba, Nov. 2001, T. Noda ed., Nat. Inst. Materials Sci., pp 369-372.

  34. T. Akita, P. Lu, S. Ichikawa, K. Tanaka, and M. Haruta, Surf. Interface Anal., 31 (2001) 73.

    Google Scholar 

  35. I. Langmuir, J. Amer. Chem. Soc., 40 (1918) 1361.

    Google Scholar 

  36. G. R. Bamwenda, S. Tsubota, T. Nakamura, and M. Haruta, Catal. Lett., 44 (1997) 83.

    Google Scholar 

  37. T. Hayashi, K. Tanaka, and M. Haruta, J. Catal., 178(1998) 566.

    Google Scholar 

  38. Z. M. Liu and M. A. Vannice, Catal. Lett., 43 (1997) 51.

    Google Scholar 

  39. M. Okumura, S. Nakamura, S. Tsubota, T. Nakamura, M. Azuma, and M. Haruta, Catal. Lett., 51 (1998) 53.

    Google Scholar 

  40. M. Datè and M. Haruta, J. Catal. 201 (2001) 221.

    Google Scholar 

  41. D. A. H. Cunningham, W. Vogel, H. Kageyama, S. Tsubota, and M. Haruta, J. Catal., 177 (1998) 1.

    Google Scholar 

  42. R. D. Walters, J. J. Weimer, and J. E. Smith, Catal. Lett., 30 (1995) 181.

    Google Scholar 

  43. M. Haruta, Now and Future, 7 (1992) 13.

    Google Scholar 

  44. A. Ueda and M. Haruta, Shigen Kankyou Taisaku (Resources and the Environmental Technology), 28 (1992) 1035.

    Google Scholar 

  45. M. Haruta, B. S. Uphade, S. Tsubota, and A. Miyamoto, Res. Chem. Intermed., 24 (1998) 329.

    Google Scholar 

  46. Y. A. Kalvachev, T. Hayashi, S. Tsubota, and M. Haruta, J. Catal., 186 (1999) 228.

    Google Scholar 

  47. B. S. Uphade, Y. Yamada, T. Nakamura, and M. Haruta, Appl. Catal. A: General, 215 (2001) 137.

    Google Scholar 

  48. E. E. Stangland, K. B. Stavens, R. P. Andres, and W. N. Delgass, J. Catal., 191 (2000) 332.

    Google Scholar 

  49. G. Mul, A. Zwijnenburg, B. Linden, M. Makkee, and J. A. Moulijn, J. Catal., (2001) 3239.

  50. H. Sakurai and M. Haruta, Appl. Catal. A: General 127 (1995) 93.

    Google Scholar 

  51. A. Baiker, M. Kilo, M. Maciejewski, S. Menzi, and A. Wokaun, Proc. 10th Intern. Congr. Catal. (L. Guzci et al. eds.), Elsevier, Amsterdam, (1993) 1257.

    Google Scholar 

  52. A. Ueda and M. Haruta, Appl. Catal. B: Environmental, 285 (1996) 81 and Gold Bull., 32 (1999) 3.

    Google Scholar 

  53. M. Valden, X. Lai, and D. W. Goodman, Science, 281 (1998) 1647.

    Google Scholar 

  54. Y. Iizuka, T. Tode, T. Takao, K. Yatsu, T. Takeuchi, S. Tsubota, and M. Haruta, J. Catal., 187 (1999) 50.

    Google Scholar 

  55. W. Vogel, D. A. H. Cunningham, K. Tanaka, and M. Haruta, Catal. Lett., 40 (1996) 175.

    Google Scholar 

  56. D. A. H. Cunningham, W. Vogel, and M. Haruta, Catal. Lett., 63 (1999) 43.

    Google Scholar 

  57. U. Heiz and W.-D. Schneider, J. Phys. D: Appl. Phys., 33 (2000) R85.

    Google Scholar 

  58. S. Abbet, U. Heiz, H. Hkkinen, and U. Landman, Phys. Rev. Lett., 86 (2001) 5950.

    Google Scholar 

  59. U. Heiz, A. Sanchez, S. Abbet, and W-D. Schneider, J. Am. Chem. Soc., 121 (1999) 3214.

    Google Scholar 

  60. F. Boccuzzi, A. Chiorino, M. Manzoli, P. Lu, T. Akita, S. Ichikawa, and M. Haruta, J. Catal., 202 (2001) 256–267.

    Google Scholar 

  61. M. Mavrikakis, P. Stoltze, and J. K. Nfrskov, Catal. Lett., 64 (2000) 101.

    Google Scholar 

  62. M. Olea, M. Kunitake, T. Shido, and Y. Iwasawa, Phys. Chem. Chem. Phys., 3 (2001) 627.

    Google Scholar 

  63. M. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak, and R. J. Behm, J. Catal., 197 (2001) 113.

    Google Scholar 

  64. H. Liu, A. I. Kozlov, A. P. Kozlova, T. Shido, KL. Asakura, and Y. Iwasawa, J. Catal., 185 (1999) 252.

    Google Scholar 

  65. M. Okumura, J. M. Coronado, J. Soria, M. Haruta, and J. C. Conesa, J. Catal., 203 (2001) 168–174.

    Google Scholar 

  66. M. Haruta, M. Dat, Y. Iizuka, and F. Boccuzzi, Shokubai, 43 (2001) 125.

    Google Scholar 

  67. S. Minic, S. Scir, C. Crisafulli, A. M. Visco, and S. Galvagno, Catal. Lett., 47 (1997) 273.

    Google Scholar 

  68. Z. Hao, L. An, H. Wang, and T. Hu, React. Kinet. Catal. Lett., 70 (1) (2000) 153.

    Google Scholar 

  69. D. Horvàth, L. Toth, and L. Guczi, Catal. Lett., 67 (2000) 117.

    Google Scholar 

  70. F. E. Wagner, S. Galvagno, C. Milone, A. M. Visco, L. Stievano, and S. Calogero, J. Chem. Soc., Faraday Trans., 93 (1997) 3403.

    Google Scholar 

  71. H. Kageyama, N. Kamijo, T. Kobayashi, and M. Haruta, Physica B158 (1989) 183.

    Google Scholar 

  72. S. Tsubota, D. A. H. Cunningham, Y. Bando, and M. Haruta, Stud. Surf. Sci. Catal., 91 (1995) 227.

    Google Scholar 

  73. Y. Kobayashi, S. Nasu, S. Tsubota, and M. Haruta, Hyperfine Interactions, 126 (2000) 95.

    Google Scholar 

  74. G. C. Bond and D. T. Thompson, Gold Bull., 33 (2000) 41.

    Google Scholar 

  75. H. Sakurai, A. Ueda, T. Kobayashi, and M. Haruta, J. Chem. Soc. Chem. Commun., (1997) 271.

  76. D. Andreeva, V. Idakiev, T. Tabakov, and A. Andreev, J. Catal., 158 (1996) 354.

    Google Scholar 

  77. T. Tabakova, V. Idakiev, D. Andreeva, I. Mitov, Appl. Catal. A: General, 202 (2000) 336.

    Google Scholar 

  78. M. Mokhtar, T. M. Salama, and M. Ichikawa, J. Colloid Interface Sci., 224 (2000) 336.

    Google Scholar 

  79. R. M. Torres Sanchez, A. Ueda, K. Tanaka, and M. Haruta, J. Catal., 168 (1997) 125.

    Google Scholar 

  80. M. J. Kahlich, H. A. Gasteiger, and R. J. Behm, J. Catal., 182 (1999) 430.

    Google Scholar 

  81. M. M. Schubert, S. Hachenberg, A. C. van Veen, M. Muhler, V. Plzak, and R. J. Behm, J. Catal., 187 (2001) 113.

    Google Scholar 

  82. M. Okumura, S. Nakamura, and M. Haruta, to be submitted.

  83. J. Jia, K. Haraki, J. N. Kondo, K. Domen, and K. Tamaru, J. Phys. Chem., B 104 (2000) 11153.

    Google Scholar 

  84. Z. Xu, F.-S. Xiao, S. K. Purnell, O. Alexeev, S. Kawi, S. E. Deutsh, and B. C. Gates, Nature, 372 (1994) 346.

    Google Scholar 

  85. P. Claus, A. Brückner, C. Mohr, and H. Hofmeister, J. Am. Chem. Soc., 122 (2000) 11430.

    Google Scholar 

  86. C. Mohr, and H. Hofmeister, M. Lucas, and P. Clause, Chem. Eng. Technol., 23 (2000) 4.

    Google Scholar 

  87. J. E. Bailie, H. A. Abdullah, J. A. Anderson, C. H. Roechester, N. V. Richardson, N. Hodge, J-G. Zhang, A. Burrows, C. J. Kiely, and G. J. Hutchings, Phys. Chem. Chem. Phys., 3 (2001) 4113.

    Google Scholar 

  88. C. Bianchi, F. Porta, L. Prati, and M. Rossi, Topics in Catal., 13 (2000) 231.

    Google Scholar 

  89. F. Porta, L. Prati, M. Rossi, S. Coluccia, and G. Martra, Catal. Today, 61 (2000) 165.

    Google Scholar 

  90. L. Pasquato, F. Rancan, P. Scrimin, F. Mancin, and C. Frigeri, J. Chem. Soc. Chem. Commun., (2000) 2253.

  91. A. Ueda and M. Haruta, Appl. Catal. B: Environmental, 18 (1998) 115.

    Google Scholar 

  92. C. N. Hinshelwood and C. R. Prichard, Proc. Roy. Soc. London, 108A (1925) 211.

    Google Scholar 

  93. V. M. Stepanov, V. D. Yagodovskii, and H. Agilar, Russian J. Phys. Chem., 49 (1975) 1335.

    Google Scholar 

  94. L. Yan, X. Zhang, T. Ren, H. Zhang, X. Wang, and J. Suo, Chem. Comm., (2002) 860.

  95. B. Nkosi, M. D. Adams, N. J. Coville, and G. J. Hutchings, J. Catal., 128 (1991) 333, 378.

    Google Scholar 

  96. T. Aida, R. Higuchi, and H. Niiyama, Chem. Lett., (1990) 2247.

  97. Y. Takita, T. Imamura, Y. Mizuhara, Y. Abe, and T. Ishihara, Appl. Catal. B: Environmental, 1 (1992) 79.

    Google Scholar 

  98. M. Okumura, M. Haruta, X. Wang, O. Kajikawa, and O. Okada, Abstract, 3rd Intern. Conf. Environmental Catal., Tokyo, Dec. 2001, pp.1516.

  99. NASA Conf. Publ. No. 3076, Low-Temperature CO-Oxidation Catalysts for Long-Life CO2 Lasers, D. R. Schryer and G. B. Hoflund eds., 1990.

  100. J. A. Macken, S. K. Yagnik, and M. A. Samis, IEEE J. Quantum Electron., 25 (1989) 1695.

    Google Scholar 

  101. S.A. Starostin, Y. B. Udalov, P. J. M. Peters, and W.J. Witteman, Appl. Phys. Lett., 77 (2000) 3337.

    Google Scholar 

  102. V. M. Cherezov, M. Z. Novgorodov, V. N. Ochkin, V. G. Samorodov, E. F. Shishkanov, V. A. Stepanov, and W. J. Witteman, Appl. Phys., B71 (2000) 503.

    Google Scholar 

  103. B. S. Uphade, T. Akita, T. Nakamura, and M. Haruta, J. Catal., in press.

  104. Y. Usami, K. Kagawa, M. Kawazoe, Y. Matsumura, H. Sakurai, and M. Haruta, Appl. Catal. A: General, 171 (1998) 123.

    Google Scholar 

  105. F. Cosandey and T. E. Madey, Surf. Rev. Lett., 8 (2001) 73.

    Google Scholar 

  106. V. A. Bondzie, S. C. Parker, and C. T. Campbell, Catal. Lett., 63 (1999) 143.

    Google Scholar 

  107. R. Schölgl, CATTECH, 5 (2001) 146.

    Google Scholar 

  108. D. A. H. Cunningham, T. Kobayashi, N. Kamijo, and M. Haruta, Catal. Lett., 25 (1994) 257.

    Google Scholar 

  109. M. Haruta, M. Yoshizaki, D. A. H. Cunningham, and T. Iwasaki, Ultraclean Technology (Japanese), 8 (1996) 1.

    Google Scholar 

  110. S. Tsubota, T. Nakamura, K. Tanaka, and M. Haruta, Catal. Lett., 56 (1998)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haruta, M. Catalysis of Gold Nanoparticles Deposited on Metal Oxides. CATTECH 6, 102–115 (2002). https://doi.org/10.1023/A:1020181423055

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020181423055

Keywords

Navigation