Skip to main content
Log in

Bayesian Analysis of Population PK/PD Models: General Concepts and Software

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Markov chain Monte Carlo (MCMC) techniques have revolutionized the field of Bayesian statistics by enabling posterior inference for arbitrarily complex models. The now widely used WinBUGS software has, over the years, made the methodology accessible to a great many applied scientists, in all fields of research. Despite this, serious application of MCMC methods within the field of population PK/PD has been comparatively limited. We appreciate that for many applied pharmacokineticists the prospect of conducting a Bayesian analysis will require numerous alien concepts to be taken on board and it may be difficult to justify investing the time and effort required in order to understand them (especially since the approach is so computer-intensive). For this reason we provide here a thorough (but often informal) discussion of all aspects of Bayesian inference as they apply specifically to population PK/PD. We also acknowledge that while the WinBUGS software is general purpose, model specification for some types of problem, population PK/PD being a prime example, can be very difficult, to the extent that a specialized interface for describing the problem at hand is often a practical necessity. In the latter part of this paper we describe such an interface, namely PKBugs. A principal aim of the paper is to offer sufficient technical background, in an easy to follow format, that the reader may develop both the confidence and know-how to make appropriate use of the PKBugs/WinBUGS framework (or similar software) for their own data analysis needs, should they choose to adopt a Bayesian approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. G. Best, D. J. Spiegelhalter, A. Thomas, and C. E. G. Brayne. Bayesian analysis of realistically complex models, J. R. Statist. Soc. A 159:323-342 (1996).

    Google Scholar 

  2. A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis, Chapman and Hall, London (1995).

    Google Scholar 

  3. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov Chain Monte Carlo in Practice, Chapman and Hall, London (1996).

    Google Scholar 

  4. H. S. Migon and D. Gamerman. Statistical Inference: an Integrated Approach, Arnold, London (1999).

    Google Scholar 

  5. N. G. Best, K. K. C. Tan, W. R. Gilks, and D. J. Spiegelhalter. Estimation of population pharmacokinetics using the Gibbs sampler, J. Pharmacokin. Biopharm. 23:407-435 (1995).

    Google Scholar 

  6. P. Spector, An Introduction to S and S-PLUS, Duxbury Press, Belmont, CA (1994).

    Google Scholar 

  7. D. Spiegelhalter, A. Thomas, and N. Best, WinBUGS Version 1.3 User Manual, Medical Research Council Biostatistics Unit, Cambridge (2000).

    Google Scholar 

  8. J. Rasbash et al. A User's Guide to MLwiN (Second Edition), Institute of Education, London (2000).

    Google Scholar 

  9. S. L. Beal and L. B. Sheiner. NONMEM User's Guide, parts I-VII, NONMEM Project Group, San Francisco (1992).

    Google Scholar 

  10. M. O. Karlsson and L. B. Sheiner. The importance of modeling inter-occasion variability in population pharmacokinetic analyses, J. Pharmacokin. Biopharm. 21:735-750 (1993).

    Google Scholar 

  11. D. J. Lunn and L. J. Aarons. Markov chain Monte Carlo techniques for studying interoccasion and intersubject variability: application to pharmacokinetic data, Appl. Statist. 46:73-91 (1997).

    Google Scholar 

  12. J. C. Wakefield, A. F. M. Smith, A. Racine-Poon, and A. E. Gelfand. Basyesian analysis of linear and non-linear population models by using the Gibbs sampler, Appl. Statist. 43:201-221 (1994).

    Google Scholar 

  13. D. J. Spiegelhalter, N. G. Best, and B. P. Carlin. Bayesian deviance, the effective number of parameters, and the comparison of arbitrarily complex models, Technical Report, Medical Research Council Biostatistics Unit, Cambridge (1998).

  14. A. E. Gelfand and M. Trevisani. Inequalities between expected marginal log likelihoods with implications for likelihood-based model comparison, Technical Report tr0038, Dept.of Statistics, University of Connecticut (2000).

  15. S. L. Lauritzen, A. P. Dawid, B. N. Larsen, and H. G. Leimer. Independence properties of directed Markov fields, Networks 20:491-505 (1990).

    Google Scholar 

  16. J. Whittaker. Graphical Models in Applied Multivariate Analysis, John Wiley and Sons, Chichester (1990).

    Google Scholar 

  17. D. J. Spiegelhalter, A. P. Dawid, S. L. Lauritzen, and R. G. Cowell. Bayesian analysis in expert systems (with discussion), Statistical Science 8:219-283 (1993).

    Google Scholar 

  18. D. J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter. WinBUGS-a Bayesian modeling framework: concepts, structure, and extensibility, Statistics and Computing 10:325-337 (2000).

    Google Scholar 

  19. G. R. Grimmett and D. R. Stirzaker. Probability and Random Processes, 2nd Edition, Oxford University Press, New York (1992).

    Google Scholar 

  20. S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, IEEE Trans. Pattn. Anal. Mach. Intell. 6:721-741 (1984).

    Google Scholar 

  21. A. E. Gelfand and A. F. M. Smith. Sampling-based approaches to calculating marginal densities, J. Am. Statist. Ass. 85:398-409 (1990).

    Google Scholar 

  22. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equations of state calculations by fast computing machines, J. Chem. Phys. 21:1087-1091 (1953).

    Google Scholar 

  23. W. K. Hastings. Monte Carlo sampling-based methods using Markov chains and their applications, Biometrika 57:97-109 (1970).

    Google Scholar 

  24. W. R. Gilks. Full conditional distributions. In W. R. Gilks, S. Richardson, and D. J. Spiegelhalter (eds.), Markov Chain Monte Carlo in Practice, Chapman and Hall, London, 1996, pp. 75-88.

    Google Scholar 

  25. B. D. Ripley. Stochastic Simulation, John Wiley and Sons, New York (1987).

    Google Scholar 

  26. W. R. Gilks and P. Wild. Adapative rejection sampling for Gibbs sampling, Applied Statistics 41:337-348 (1992).

    Google Scholar 

  27. W. Gilks, Derivative-free adaptive rejection sampling for Gibbs sampling. In: J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (eds.), Bayesian Statistics 4, Oxford University Press, Oxford, 1992, pp. 641-665.

    Google Scholar 

  28. R. M. Neal. Markov chain Monte Carlo methods based on ''slicing'' the density function, Technical Report 9722, Dept.of Statistics, University of Toronto (1997).

  29. R. Natarajan and R. E. Kass. Reference Bayesian methods for generalized linear mixed models, J. Am. Statist. Ass. 95:227-237 (2000).

    Google Scholar 

  30. M. K. Cowles and B. P. Carlin. Markov chain Monte Carlo convergence diagnostics: a comparative review, J. Am. Statist. Ass. 91:883-904 (1996).

    Google Scholar 

  31. K. L. Mengersen, C. P. Robert, and C. Guihenneuc-Jouyaux. MCMC convergence diagnostics: a reviewww, in Bayesian Statistics 6, J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (eds.), pp. 415-440, Oxford University Press, Oxford (1999).

    Google Scholar 

  32. N. G. Best, M. K. Cowles, and S. K. Vines. CODA: Convergence Diagnosis and Output Analysis software for Gibbs Sampler output: Version 0.3, Medical Research Council Biostatistics Unit, Cambridge (1995).

    Google Scholar 

  33. B. J. Smith. Bayesian Output Analysis Program (BOA) Version 0.5.0 User Manual, Department of Biostatistics, University of Iowa College of Public Health, Iowa City (2000).

    Google Scholar 

  34. A. Gelman and D. B. Rubin. Inference from iterative simulation using multiple sequences (with discussion), Statistical Science 7:457-511 (1992).

    Google Scholar 

  35. S. P. Brooks and A. Gelman. Alternative methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434-455 (1998).

    Google Scholar 

  36. S. L. Beal. Ways to fit a PK model with some data below the quantification limit, J. Pharmacokin. Pharmacodyn. 28, 481-504 (2001).

    Google Scholar 

  37. J. C. Wakefield. An expected loss approach to the design of dosage regimens via samplingbased methods, The Statistician 43:13-29 (1994).

    Google Scholar 

  38. H. Akaike. A new look at statistical model identification, IEEE Trans. Auto. Cont. AU-19:716-722 (1974).

    Google Scholar 

  39. P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika 82:711-732 (1995).

    Google Scholar 

  40. A. H. Thomson, S. Way, S. M. Bryson, E. M. McGovern, A. W. Kelman, and B. Whiting. Population pharmacokinetics of gentamicin in neonates, Dev. Pharm. Therapeutics 11:173-179 (1988).

    Google Scholar 

  41. R. M. Neal. Suppressing random walks in Markov chain Monte Carlo using ordered overrelaxation. In M. I. Jordan (ed.), Learning in Graphical Models, Kluwer Academic Publishers, Dordrecht, 1998, pp. 205-225.

    Google Scholar 

  42. D. J. Lunn and L. Aarons. The pharmacokinetics of saquinavir: a Markov chain Monte Carlo population analysis, J. Pharmacokin. Biopharm. 26:47-74 (1998).

    Google Scholar 

  43. J. Besag, P. J. Green, D. Higdon, and K. Mengersen, Bayesian computation and stochastic systems (with discussion), Statistical Science 10:3-66 (1995).

    Google Scholar 

  44. D. J. Lunn, J. Wakefield, A. Thomas, N. Best, and D. Spiegelhalter, PKBugs User Guide Version 1.1, Dept. Epidemiology and Public Health, Imperial College School of Medicine, London (1999).

    Google Scholar 

  45. P. Diggle and M. G. Kenward. Informative drop-out in longitudinal data analysis (with discussion), Appl. Statist. 43:49-93 (1994).

    Google Scholar 

  46. L. B. Sheiner, S. L. Beal, and A. Dunne, Analysis of nonrandomly censored ordered categorical longitudinal data from analgesic trials, J. Am. Statist. Ass. 92:1235-1244 (1997).

    Google Scholar 

  47. J. Richard, J. M. Cardot, and J. Godbillon. Inter-and intra-subject variability of metoprolol kinetics after intravenous administration, Eur. J. Drug Metab. Pharmakinet. 19, 157-162 (1994).

    Google Scholar 

  48. J. E. Bennett and J. C. Wakefield. A comparison of a Bayesian population method with two methods as implemented in commercially available software, J. Pharmacokin. Biopharm. 24:403-432 (1996).

    Google Scholar 

  49. L. Aarons. Software for population pharmacokinetics and pharmacodynamics, Clin. Pharmacokin. 36:255-264 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lunn, D.J., Best, N., Thomas, A. et al. Bayesian Analysis of Population PK/PD Models: General Concepts and Software. J Pharmacokinet Pharmacodyn 29, 271–307 (2002). https://doi.org/10.1023/A:1020206907668

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020206907668

Navigation