Skip to main content
Log in

Association of GPI-Anchored Protein TAG-1 with Src-Family Kinase Lyn in Lipid Rafts of Cerebellar Granule Cells

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We have demonstrated that antibody-mediated crosslinking of GPI-anchored TAG-1 induced activation of src-family kinase Lyn and rapid tyrosine phosphorylation of an 80-kDa protein (p80), a putative substrate for Lyn, in the lipid raft fraction prepared from primary cerebellar cultures, suggesting the functional association of TAG-1 with Lyn in lipid rafts of the rat cerebellum. In this study, the association was confirmed using a cDNA expression system. TAG-1-expressing CHO transfectants exhibited enhanced self-aggregation and promoted neurite outgrowth of primary cerebellar cultures as a culture substrate. The anti-TAG-1 antibody co-immunoprecipitated Lyn with TAG-1 and induced co-patching of TAG-1 with Lyn in both TAG-1 and Lyn-expressing CHO transfectants. Density gradient analysis revealed that TAG-1 is present in the lipid raft fraction of the CHO transfectants. Furthermore, pretreatment with a sphingolipid biosynthesis inhibitor ISP-1 reduced the extent of tyrosine phosphorylation of p80 by the antibody-mediated crosslinking of TAG-1. Immunocytochemical study showed that both TAG-1 and Lyn are present in cerebellar granule cells. These observations suggest that TAG-1 associates with Lyn in lipid rafts of rat cerebellar granule cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Yamakawa, T. and Nagai, Y. 1978. Trends Biochem. Sci. 3: 128-131.

    Google Scholar 

  2. Hakomori, S. 1981. Ann. Rev. Biochem. 50:733-764.

    Google Scholar 

  3. Hakomori, S. 1990. J. Biol. Chem. 265:18713-18716.

    Google Scholar 

  4. Tettamanti, G. and Riboni, L. 1994. Prog. Brain Res. 101: 77-100.

    Google Scholar 

  5. Rösner, H., Al-Aqtum, M., and Rahmann, H. 1992. Neurochem. Int. 20:339-351.

    Google Scholar 

  6. Purpura, D. P. 1978. Nature 276:520-521.

    Google Scholar 

  7. Toffano, G., Savoini, G., Moroni, F., Lombardi, G., Calza, L., and Agnati, L. F. 1983. Brain Res. 261:163-166.

    Google Scholar 

  8. Roisen, F. J., Bartfeld, H., Nagele, R., and Yorke, G. 1981. Science 214:577-578.

    Google Scholar 

  9. Ledeen, R. W. 1984. J. Neurosci. Res. 12:147-159.

    Google Scholar 

  10. Skaper, S. D., Katoh-Semba, R., and Varon, S. 1985. Brain Res. 355:19-26.

    Google Scholar 

  11. Schwarz, A., Rapaport, E., Hirschberg, K., and Futerman, A. H. 1995. J. Biol. Chem. 270:10990-10998.

    Google Scholar 

  12. Yamashita, T., Wada, R., Sasaki, T., Deng, C., Bierfreund, U., Sandhoff, K., and Proia, R. L. 1999. Proc. Natl. Acad. Sci. USA. 96:9142-9147.

    Google Scholar 

  13. Kojima, N., Kurosawa, N., Nishi, T., Hanai, N., and Tsuji, S. 1994. J. Biol. Chem. 269:30451-30456.

    Google Scholar 

  14. Okada, M., Itoh, M., Haraguchi, M., Okajima, T., Inoue, M., Ohishi, H., Matsuda, Y., Iwamoto, T., Kawano, T., Fukumoto, S., Miyazaki, H., Furukawa, K., Aizawa, S., and Furukawa, K. 2002. J. Biol. Chem., 277:1633-1636.

    Google Scholar 

  15. Furukawa, K., Takamiya, K., Okada, M., Inoue, M., Fukumoto, S., and Furukawa, K. 2001. Biochim. Biophys. Acta 1525:1-12.

    Google Scholar 

  16. Sheikh, K. A., Sun, J., Liu, Y., Kawai, H., Crawford, T. O., Proia, R. L., Griffin, J. W., and Schnaar, R. L. 1999. Proc. Natl. Acad. Sci. U. S. A. 96:7532-7537.

    Google Scholar 

  17. Simons, K. and Ikonen, E. 1997. Nature 387:569-572.

    Google Scholar 

  18. Brown, D. A. and London, E. 1998. Annu. Rev. Cell Dev. Biol. 14:111-136.

    Google Scholar 

  19. Anderson, R. G. W. 1998. Annu. Rev. Biochem. 67:199-225.

    Google Scholar 

  20. Okamoto, T., Schlegel, A., Scherer, P. E., and Lisanti, M. 1998. J. Biol. Chem. 273:5419-5422.

    Google Scholar 

  21. Masserini, M., Palestini, P., and Pitto, M. 1999. J. Neurochem. 73:1-11.

    Google Scholar 

  22. Kurzchalia, T. V. and Parton, R. G. 1999. Curr. Opin. Cell Biol. 11:424-431.

    Google Scholar 

  23. Kasahara, K. and Sanai, Y. 1999. Biophys. Chem. 82:121-127.

    Google Scholar 

  24. Kasahara, K. and Sanai, Y. 2000. Glycoconj. J. 17:153-162.

    Google Scholar 

  25. Kasahara, K. and Sanai, Y. 2001. Trends Glycosci. Glycotech. 13:251-259.

    Google Scholar 

  26. Kasahara, K. and Sanai, Y. 2001. Trends Glycosci. Glycotech. 13:587-594.

    Google Scholar 

  27. Kasahara, K., Watanabe, Y., Yamamoto, T., and Sanai, Y. 1997. J. Biol. Chem. 272:29947-29953.

    Google Scholar 

  28. Kasahara, K., Watanabe, K., Takeuchi, K., Kaneko, H., Oohira, A., Yamamoto, T., and Sanai, Y. 2000. J. Biol. Chem. 275:34701-34709.

    Google Scholar 

  29. Maeda, N., Hamanaka, H., Oohira, A., and Noda, M. 1995. Neuroscience 67:23-35.

    Google Scholar 

  30. Levi, G., Aloisi, F., Ciotti, M. T., Thangnipon, W., Kingsbury, A., and Balazs, R. 1989. A Dissection and Tissue Culture Manual of Nervous System, Alan R. Liss, Inc., pp 211-214.

  31. Takebe, Y., Seiki, M., Fujisawa, J.-I., Hoy, P., Yokota, K., Arai, K.-I., Yoshida, M., and Arai, N. 1988. Mol. Cell. Biol. 8: 466-472.

    Google Scholar 

  32. Brown, D. A. and Rose, J. K. 1992. Cell 68:533-544.

    Google Scholar 

  33. Furley, A. J., Morton, S. B., Manalo, D., Karagogeos, D., Dodd, J., and Jessell, T. M. 1990. Cell 61:157-170.

    Google Scholar 

  34. Milev, P., Maurel, P., Häring, M., Margolis, R. K., and Margolis, R. U. 1996. J. Biol. Chem. 271:15716-15723.

    Google Scholar 

  35. Miyake, Y., Kozutsumi, Y., Nakamura, S., Fujita, T., and Kawasaki, T. 1995. Biochem. Biophys. Res. Commun. 211: 396-403.

    Google Scholar 

  36. Kawashima, I., Nagata, I., and Tai, T. 1996. Brain Res. 732: 75-86.

    Google Scholar 

  37. Yoshihara, Y., Kawasaki, M., Tamada, A., Nagata, S., Kagamiyama, H., and Mori, K. 1995. J. Neurobiol. 28:51-69.

    Google Scholar 

  38. Chen, S., Ren Y. Q., and Hillman, D. E. 1996. Dev. Brain Res. 92:140-146.

    Google Scholar 

  39. Kuhar, S. G., Feng, L., Vidan, S., Ross, M. E., Hatten, M. E., and Heintz, N. 1993. Development 117:97-104.

    Google Scholar 

  40. Buttiglione, M., Revest, J.-M., Pavlou, O., Karagogeos, D., Furley, A., Rougon, G., and Faivre-Sarrailh, C. 1998. J. Neurosci. 18:6853-6870.

    Google Scholar 

  41. Umemori, H., Wanaka, A., Kato, H., Takeuchi, M., Tohyama, M., and Yamamoto, T. 1992. Mol. Brain Res. 16:303-310.

    Google Scholar 

  42. Palestini, P., Botto, L., Guzzi, F., Calvi, C., Ravasi, D., Masserini, M., and Pitto, M. 2002. J. Neurosci. Res. 67: 729-738.

    Google Scholar 

  43. Prinetti, A., Chigorno, V., Tettamanti, G., and Sonnino, S. 2000. J. Biol. Chem. 275:11658-11665.

    Google Scholar 

  44. Prinetti, A., Chigorno, V., Prioni, S., Lobert, N., Marano, N., Tettamanti, G., and Sonnino, S. 2001. J. Biol. Chem. 276: 21136-21145.

    Google Scholar 

  45. Prinetti, A., Prioni, S., Chigorno, V., Karagogeos, D., Tettamanti, G., and Sonnino, S. 2001. J. Neurochem. 78:1162-1167.

    Google Scholar 

  46. Prinetti, A., Marano, N., Prioni, S., Chigorno, V., Mauri, L., Casellato, R., Tettamanti, G., and Sonnino, S. 2000. Glycoconj. J. 17:223-232.

    Google Scholar 

  47. Oohira, A., Matsui, F., Tokita, Y., Yamauchi, S., and Aono, S. 2000. Arch. Biochem. Biophys. 347:24-34.

    Google Scholar 

  48. Maeda, N. and Noda, M. 1996. Development 122:647-658.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasahara, K., Watanabe, K., Kozutsumi, Y. et al. Association of GPI-Anchored Protein TAG-1 with Src-Family Kinase Lyn in Lipid Rafts of Cerebellar Granule Cells. Neurochem Res 27, 823–829 (2002). https://doi.org/10.1023/A:1020265225916

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020265225916

Navigation