Skip to main content
Log in

Involvement and interaction of various signaling compounds on the plant metabolic events during defense response, resistance to stress factors, formation of secondary metabolites and their molecular aspects

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Plants are a nearly unlimited source of phytochemicals. The plants produce various secondary metabolites, which are useful in its interaction with the environment, various stress factors and development of resistance against pathogen attack. A wide array of external stimuli are capable of triggering changes in the plant cell which leads to a cascade of reactions, ultimately resulting in the formation and accumulation of secondary metabolites which helps the plant to overcome the stress factors. The biotic and abiotic elicitors can result in an enhancement of the secondary metabolite production. The stimuli are perceived by receptors, which then result in the activation of the secondary messengers. These then transmit the signals into the cell through the signal transduction pathways leading to gene expression and biochemical changes. There is interplay of the signaling molecules also which regulates the entire pathway. This review is oriented towards the factors, which influence signal transduction pathway(s) with special reference to polyamines, calcium, jasmonates, salicylates, nitric oxide and ethylene. The interplay of these components to elicit a defense response is discussed. Molecular aspects of disease resistance and regulation of plant secondary metabolism has also been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aerts RJ, Alarco A-M & De Luca V (1992) Auxins induce tryptophan decarboxylase activity in radicles of Catharanthus seedlings. Plant Physiol. 100: 1014–1019

    Google Scholar 

  • Alami I, Clerivet A, Naji M, Munster MV & Macheix JJ (1999) Elicitation of Platanus ×acerifolia cell-suspension cultures induces the synthesis of xanthoarnol, a dihydrofuranocoumarin phytoalexin. Phytochemistry 51: 733–736

    Google Scholar 

  • Albersheim P & Valent BS (1978) Host-pathogen interactions in plants. Plants, when exposed to oligosaccharides of fungal origin, defend themselves by accumulating antibiotics. J. Cell Biol. 78: 627–643

    Google Scholar 

  • Aldington S & Fry SC (1993) Oligosaccharins. Adv. Bot. Res. 19: 1–101

    Google Scholar 

  • Allen GJ & Sanders D (1997) Vacuolar ion channels of higher plants. Adv. Bot. Res. Adv. Plant Pathol. 25: 217–252

    Google Scholar 

  • Altman A, Friedman R, Amin D & Levin N (1982) Polyamine effects and metabolism in plants under stress conditions. In: Wareing PF (ed) Plant Growth Substances (pp 451-461). Academic Press, London

    Google Scholar 

  • Alvarez ME, Pennell RI, Meijer P-J, Ishikawa A, Dixon RA & Lamb C (1998) Reactive oxygen intermediates establish a systemic signal network in the establishment of plant immunity. Cell 92: 773–784

    Google Scholar 

  • Angelini R, Bragaloni M, Federico R, Infantino A & Porta-Puglia A (1993) Involvement of polyamines, diamine oxidase and peroxidase in resistance of chickpea to Ascochyta rabiei. J Plant Physiol. 142: 704–709

    Google Scholar 

  • Antognoni FR, Pistocchi P, Casali P & Bagni N (1995) Does calcium regulate polyamine uptake in carrot protoplasts? Plant Physiol. Biochem. 33: 701–708

    Google Scholar 

  • Aoyagi H, Sakamoto Y, Asada M & Tanaka H (1998) Indole alkaloid production by Catharanthus roseus protoplasts with artificial cell walls containing guluronic acid rich alginate gel. J Ferm. Bioeng. 85: 306–311

    Google Scholar 

  • Apostol I, Heinstein PF & Low PS (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells: role in defense and signal transduction. Plant Physiol. 90: 109–116

    Google Scholar 

  • Arbujal T, Bernasconi S, Manzocchi LA & Pelizzoni F (1997) Effect of calcium and cell immobilization on the production of choleocalciferol and its derivatives by Solanum malacoxylon cell cultures. Physochemistry 46: 1015–1018

    Google Scholar 

  • Arimura G, Ozawa R, Horiuchi J, Nishioka T & Takabayashi J (2001) Plant-plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochem. Syst. Ecol. 29: 1049–1061

    Google Scholar 

  • Ariyo BT, Bucke C & Keshavarz T (1997) Alginate oligosaccharides as enhancers of penicillium production in cultures of Penicillium chrysogenum. Biotechnol. Bioeng. 53: 17–20

    Google Scholar 

  • Asada M & Shuler ML (1989) Stimulation of ajmalicine production and excretion from Catharanthus roseus: effects of adsorption in situ, elicitors and alginate immobilization. Appl. Microbiol. Biotechnol. 30: 475–481

    Google Scholar 

  • Ayabe S, Iida K & Furuya T (1986) Stress-induced formation of echinatin and a metabolite, prenyl-licodione in cultured Glycyrrhiza echinata cells. Phytochemistry 25: 2803–2806

    Google Scholar 

  • Ayers AR, Goodell JJ & Angelis PL (1985) Plant detection of pathogens. In: Cooper-Driver GA, Swain T & Conn EE (eds) Recent Advances In Phytochemsistry. Chemically Mediated Interaction Between Plants and other Organisms, Vol. 19 (pp 1–20). Plenum Press, New York

    Google Scholar 

  • Baker B, Zambryski P, Staskawicz B & Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276: 726–733

    Google Scholar 

  • Baker CJ & Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu. Rev. Phytopathol. 33: 299–321

    Google Scholar 

  • Barbier-Brygoo H, Ephritikhine G, Maurel C & Guern J (1992) Perception of the auxin signal at the plasma membrane of tobacco mesophyll protoplasts. Biochem. Soc. Trans. 20: 59–63

    Google Scholar 

  • Barz W, Bless W, Daniel S, Gunia W, Hinderer W, Jaques U, Kessman H, Meier D, Tiemann K & Wittkampf U (1989) Elicitation and suppression of isoflavones and pterocarpan phytoalexin in chickpea cell cultures. In: Kurz WGW (ed) Primary and Secondary Metabolism of Plant Cell Cultures (pp 208–218). Springer, Berlin

    Google Scholar 

  • Basso LC & Smith TA (1974) Effect of mineral deficiency on amine formation in higher plants. Phytochemistry 13: 875–883

    Google Scholar 

  • Beale MH & Sponsel VM(1993) Future directions in plant hormone research. J Plant Growth Regul. 12: 227–235

    Google Scholar 

  • Ben-David C, Bashan Y & Okon Y (1986) Ethylene production in pepper (Capsicum annuum) leaves infected with Xanthomonas campestris pv vesicatoria. Physiol. Mol. Plant Pathol. 29: 305–316

    Google Scholar 

  • Bent AF (1996) Plant disease-resistance genes: function meets structure. Plant Cell. 8: 1757–1771

    Google Scholar 

  • Bergey DR, Howe GA & Ryan CA (1996) Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc. Natl. Acad. Sci. USA 93: 12053–12058

    Google Scholar 

  • Bethke PC, Lonsdale JE, Fath A & Jones RL (1999) Hormonally regulated programmed cell death in barley aleurone cells. Plant Cell 11: 1033–1045

    Google Scholar 

  • Bewell MA, Maathius FJM, Allen GJ & Sanders D (1999) Calcium-induced calcium release mediated by a voltage-activated cation channel in vacuolar vesicles from red beet. FEBS Lett. 458: 41–44

    Google Scholar 

  • Bey P, Danzin C & Jung M (1987) Inhibition of basic amino acid decarboxylases involved in polyamine biosynthesis. In: Mc-Cann PP, Pegg A & Sjoerdsma A (eds) Inhibition of Polyamine Metabolism (pp 1–31). Academic Press, San Deigo, CA

    Google Scholar 

  • Bilang J, Macdonald H, King PJ & Sturm A (1993) A soluble auxin-binding protein from Hyoscyamus muticus is a glutathione S-transferase. Plant Physiol. 102: 29–34

    Google Scholar 

  • Biondi S, Fornale S, Oksman-caldentey KM, Eeva M, Agostani S & Bagni N (2000) Jasmonates induce over-accumulation of methyl-putrescine and conjugated polyamines in Hyoscyamus muticus L. root cultures. Plant Cell Rep. 19: 691–697

    Google Scholar 

  • Bishop PD, Pearce G, Bryant JE & Ryan CA (1984) Isolation and characterization of the proteinase inhibitor-inducing factor from tomato leaves. Identity and activity of poly-and oligogalacturonide fragments. J Biol. Chem. 259: 13172–13177

    Google Scholar 

  • Blatt MR (2000) Cellular signaling and volume control in stomatal movements in plants. Annu. Rev. Cell Dev. Biol. 16: 221–241

    Google Scholar 

  • Blatt MR, Thiel G & Trenthan DR (1990) Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-triphosphate. Nature 346: 766–769

    Google Scholar 

  • Blechert S, Brodschelm W, Hoelder S, Krammerer L, Kutchan TM, Mueller MJ, Xia Z-Q & Zenk MH (1995) The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proc. Natl. Acad. Sci. USA 92: 4099–4105

    Google Scholar 

  • Blumwald E, Aharon GS & Lam BC-H (1998) Early signal transduction pathways in plant-pathogen interactions. Trends Plant Sci. 3: 342–346

    Google Scholar 

  • Boller T (1991) Ethylene in pathogenesis and disease resistance. In: Mattoo AK & Suttle JC (eds) The Plant Hormone Ethylene (pp 293–314). CRC Press, Boca Raton, FL

    Google Scholar 

  • Boller T & Keen NT (1997) Resistance genes and the perception and transduction of elicitor signals in host-pathogen interaction. In: Slusarenko A, Fraser RSS & van Loon LC (eds) Mechanism of Resistance to Plant Diseases (pp 189–229) Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bolwell GP (1999) Role of active oxygen species and NO in plant defense responses. Curr. Opin. Plant Biol. 2: 287–294

    Google Scholar 

  • Bolwell GP, Davies DR, Gerrish C, Auh CK & Murphy TM (1998) Comparative biochemistry of the oxidative burst produced by rose and French bean cells reveals two distinct mechanisms. Plant Physiol. 116: 1379–1385

    Google Scholar 

  • Bonhoff A & Grisebach H (1988) Elicitor-induced accumulation of glyceollin and callose in soybean roots and localized resistance against Phytophthora megasperma f.sp. glycinea. Plant Sci. 54: 203–209

    Google Scholar 

  • Bouarab K, Potin P, Correa J & Kloareg B (1999) Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. Plant Cell 11: 1635–1650

    Google Scholar 

  • Bouchereau A, Aziz A, Larher F & Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci. 140: 103–125

    Google Scholar 

  • Bourgaud F, Bouque V & Guckert A (1999) Production of flavonoids by Psoralea hairy root cultures. Plant Cell Tiss. Org. Cult. 56: 97–104

    Google Scholar 

  • Bowler C & Chua N-H (1994) Emerging themes of plant signal transduction. Plant Cell 6: 1529–1541

    Google Scholar 

  • Bowler C, Neuhaus G, Yamagata H & Chua N-H (1994) Cyclic GMP and calcium mediate phytochrome phototransduction. Cell 77: 73–81

    Google Scholar 

  • Bowling SA, Clarke JD, Liu Y, Klessig DF & Dong X (1997) The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9: 1573–1584

    Google Scholar 

  • Bradley DJ, Kjellbom P & Lamb CJ (1992) Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70: 21–30

    Google Scholar 

  • Branca C, De Lorenzo G & Cervone F (1988) Competitive inhibition of the auxin induced elongation by a-D-oligogalacturonides in pea stem segments. Physiol. Plant. 72: 499–504

    Google Scholar 

  • Brecht JK & Huber DJ (1988) Products released from enzymatically active cell wall stimulate ethylene production and ripening in preclimacteric tomato (Lycopersicon esculentum Mill.) fruit. Plant Physiol. 88: 1037–1041

    Google Scholar 

  • Brodelius P (1985) The potential role of immobilization in plant cell biotechnology. Trends Biotechnol. 3: 280–285

    Google Scholar 

  • Buitelaar RM, Cesario CMF & Tramper J (1992) Elicitation of thiophene production by hairy roots of Tagetes patula. Enz. Microb. Technol. 14: 2–7

    Google Scholar 

  • Bush DS (1992) The role of Ca2+ in the action of GA in the barley aleurone. In: Karssen CM, van Loon LC & Vreugdenhil D (eds) Progress in Plant Growth Regulation (pp 96–104). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 95–122

    Google Scholar 

  • Cameron RK, Paiva NL, Lamb CJ & Dixon RA (1999) Accumulation of salicylic acid and PR- 1 gene transcripts in relation to the systemic acquired resistance (SAR) response induced by Pseudomonas syringae pv. tomato in Arabidopsis. Physiol. Mol. Plant Pathol. 55: 121–130

    Google Scholar 

  • Campos N, Bako L, Feldwisch J, Schell J & Palme K (1992) A protein from maize labeled with azido-IAA has novel beta-glucosidase activity. Plant J. 2: 675–684

    Google Scholar 

  • Cao H, Bowling SA, Gordon AS & Dong X (1994) Characterization of an Arabidopsis mutant that is non responsive to inducers of systemic acquired resistance. Plant Cell 6: 1583–1592

    Google Scholar 

  • Cao H, Li X & Dong X (1998) Generation of broad-spectrum disease resistance by over expression of an essential regulatory gene in systemic acquired resistance. Proc. Natl. Acad. Sci. USA. 95: 6531–6536

    Google Scholar 

  • Carley E, Wolosiuk RA & Hertig CM (1983) Regulation of the activation of chloroplast fructose-1,6-bis-phosphatase (E.C.3.1.3.11). Inhibition by spermidine and spermine. Biochem. Biophys. Res. Commun. 115: 707–710

    Google Scholar 

  • Cervone F, De Lorenzo G, Degra L & Salvi G (1981) Elicitation of necrosis in Vigna unguiculata Walp. By homogenous Aspergillus niger endo-polygalacturonase and by a-D-galacturonate oligomers. Plant Physiol. 85: 626–630

    Google Scholar 

  • Cervone F, De Lorenzo G, Salvi G, Bergmann C, Ito Y, Hahn Mg, Darvill A & Albersheim P (1989) Release of phytoalexin elicitor-active oligogalacturonides by microbial pectic enzymes. In: Lugtenberg BJJ (ed) Signal Molecules in Plants and Plant-Microbe Interactions, NATO/ASI Series, Vol. H36 (pp 85- 89). Springer, Berlin-Heidelberg

    Google Scholar 

  • Chang C & Shockey JA (1999) The ethylene response pathway. Curr. Opin. Plant Biol. 2: 352–358

    Google Scholar 

  • Chang C, Kwok SF, Bleecker AB & Meyeerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product of two-component regulators. Science 262: 539–544.

    Google Scholar 

  • Chappell J, Nable R, Fleming P, Andersen RA & Burton HR (1987) Accumulation of capsidiol in tobacco cell cultures treated with fungal elicitors. Phytochemistry 26: 2259–2260

    Google Scholar 

  • Charnay D, Nari J & Noat G (1992) Regulation of plant cell-wall pectin methyl esterase by polyamine-interactions with the effects of metal ions. Eur. J Biochem. 205: 711–714

    Google Scholar 

  • Cheung WY (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207: 19–27

    Google Scholar 

  • Cho SC (1983) Effect of cytokinin and several inorganic cations on polyamine content of lettuce cotyledons. Plant Cell Physiol. 24: 27–32

    Google Scholar 

  • Clark D, Durner J, Navarre DA & Klessig DF (2000) Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol. Plant-Microb. Interact. 13: 1380–1384

    Google Scholar 

  • Clarke JD, Liu Y, Klissig DF & Dong X (1998) Uncoupling PR gene expression from NPR1 and bacterial resistance: characterization of the dominant Arabidopsis cpr 6-1 mutant. Plant Cell. 10: 557–569

    Google Scholar 

  • Cleland RE & Rayle DC (1977) Reevaluation of the effect of calcium ions on auxin-induced elongation. Plant Physiol. 60: 709–712

    Google Scholar 

  • Collinge DB & Slusarenko AJ (1987) Plant gene expression in response to pathogens. Plant Mol. Biol. 9: 389–410

    Google Scholar 

  • Constabel CP & Ryan CA (1998) A survey of wound-and methyl jasmonate-induced leaf polyphenol oxidase in crop plants. Phytochemistry 47: 507–511

    Google Scholar 

  • Contin A, van der Heijden R & Verpoorte R (1999) Effects of alkaloid precursor feeding and elicitation on the accumulation of secologanin in Catharanthus roseus cell suspension culture. Plant Cell Tiss. Org. Cult. 56: 111–119

    Google Scholar 

  • Cooucci M & Negrini N (1991) Calcium-calmodulin in germination of Phacelia tanacetifolia seeds: effects of light, temperature, fusicoccin and calcium-calmodulin antagonists. Physiol. Plant. 82: 143–149

    Google Scholar 

  • Corey KA & Barker AV (1989) Ethylene evolution and polyamine accumulation by tomato subjected to interactive stresses of ammonium toxicity and potassium deficiency. J. Am. Soc. Hortic. Sci. 114: 651–655

    Google Scholar 

  • Cote F & Hahn Mg (1994) Oligosaccharins: structures and signal transduction. Plant Mol. Biol. 26: 1375–1411

    Google Scholar 

  • Cote F, Ham K-S, Hahn Mg & Bergmann CW (1998) Oligosaccharide elicitors in host-pathogen interactions: generation, perception and signal transduction. In: Biswas BB & Das HK (eds) Subcellular Biochemistry, Plant- Microbe Interactions (pp 385–432). Plenum, New York

    Google Scholar 

  • Creelman RA & Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc. Natl. Acad. Sci. USA. 92: 4114–4119

    Google Scholar 

  • Curtis WR, Wang P & Humphrey A (1995) Role of calcium and differentiation in enhanced sesquiterpene elicitation from calcium alginate immobilised plant tissue. Enz. Microb. Technol. 17: 554–557

    Google Scholar 

  • D'silva I & Heath MC (1997) Purification and characterization of two novel hypersensitive response-inducing specific elicitors produced by the cowpea rust fungus. J Biol. Chem. 272: 3924–3927

    Google Scholar 

  • Darvill A & Albersheim P (1984) Phytoalexins and their elicitors - a defense against microbial infections in plants. Annu. Rev. Plant Physiol. 35: 243–275

    Google Scholar 

  • Darvill A, Albersheim P, Bucheli P, Doares S, Doubrava N, Eberhard S, Gollin DJ, Hahn Mg, Marfa-Riera V, York WS & Mohnen D (1989) Oligosaccharins-plant regulatory molecules. In: Lugtenberg BJJ (ed) Signal Molecules in Plants and Plant-Microbe Interactions (pp. 41–48) Springer, Berlin, Heidelberg

    Google Scholar 

  • Darvill A, Augur C, Bergmann C, Carlson RW, Cheong J-J, Eberhard S, Hahn Mg, Lo V-M, Marfa V, Meyer B, Mohnen D, O'Neill MA, Spiro MD, van Halbeek H, York WS & Albersheim P (1992) Oligosaccharins -oligosaccharides that regulate growth, development and defense responses in plants. Glycobiology 2: 181–198

    Google Scholar 

  • Dauwalder M, Roux SJ & Hardison L (1986) Distribution of calmodulin in pea seedlings: immunocytochemical localization in plumules and root apices. Planta 168: 461–470

    Google Scholar 

  • Davies GJ, Littlechild JA, Watson HC & Hall L (1991) Sequence and expression of the gene encoding 3-phosphoglycerate kinase from Bacillus stearothermophilus. Gene 109: 39–45

    Google Scholar 

  • Davies PJ, Rastogi R & Law DM (1991) Polyamines and their metabolism in ripening tomato fruit. In: Flores HE, Arteca RN & Shannon JC (eds) Polyamines and Ethylene. Biochemistry, Physiology and Interactions (pp 112–125). American Society of Plant Physiologists

  • De Laat, CMM & Van Loon LC (1983) The relationship between stimulated ethylene production and symptom expression in virus-infected tobacco leaves. Physiol. Plant Pathol. 22: 261–273

    Google Scholar 

  • De Ruiter GA & Rudolph B (1997) Carrageenan biotechnology. Trends Food Sci. Technol. 8: 389–395

    Google Scholar 

  • DeKoninck P & Schulman H (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279: 227–230

    Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E & Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science. 266: 1247–1250

    Google Scholar 

  • Delaney TP, Friedrich L & Ryals JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc. Natl. Acad. Sci. USA 92: 6602–6606

    Google Scholar 

  • Delledonne M, Xia Y, Dixon RA & Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394: 585–588

    Google Scholar 

  • Desikan R, Reynolds A, Hancock JT & Neill SJ (1998) Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defense gene expression in Arabidopsis suspension cultures. Biochem. J. 330: 115–120

    Google Scholar 

  • DeWit PJGM (1997) Pathogen avirulence and plant resistance: a key role for recognition. Trends Plant Sci. 2: 452–458

    Google Scholar 

  • Dicke M & Bruin J (2001) Chemical information transfer between plants: back to the future. Biochem. Syst. Ecol. 29: 981–994

    Google Scholar 

  • Di Cosmo T, Quesne A, Misawa M & Tallevi GG (1987) Increased synthesis of ajmalicine and catharanthine by cell suspension cultures of Catharanthus roseus in response to fungal culture filtrates. Appl. Biochem. Biotechnol. 14: 101–106

    Google Scholar 

  • Dittrich H, Kutcham TM & Zenk MH (1992) The jasmonate pre-cursor 12-oxo-phytodienoic acid induces phytoalexin synthesis in Petroselinum crispum cell cultures. FEBS Lett. 309: 33–36

    Google Scholar 

  • Dixon RA & Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell. 7: 1085–1097

    Google Scholar 

  • Dixon RA, Harrison MJ & Paiva NL (1995) The isoflavanoid pathway: from enzymes to genes to transcription factors. Physiol. Plant. 93: 385–392

    Google Scholar 

  • Doares SH, Narraez-Vasquez J, Conconi A & Ryan CA (1995a) Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol. 108: 1741–1746

    Google Scholar 

  • Doares SH, Syrovets T, Weiler EW & Ryan CA (1995b) Oligogalacturonides and chitosan activate plant defense genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. USA. 92: 4095–4098

    Google Scholar 

  • Doherty HM, Selvendran RR & Bowles DJ (1988) The wound response of tomato plants can be inhibited by aspirin and related hydroxy-benzoic acids. Physiol. Mol. Plant Pathol. 33: 377–384.

    Google Scholar 

  • Dorey S, Baillieul F, Pierrel MA, Saindrenan P, Fritig B & Kaufmann S (1997) Spatial and temporal induction of cell death defense genes, and accumulation of salicylic acid in tobacco leaves reacting hypersensitively to a fungal glycoprotein elicitor. Mol. Plant- Microbe Interact. 10: 646–655

    Google Scholar 

  • Dorey S, Kopp M, Geoffery P, Fritig B & Kauffmann S (1999) Hydrogen peroxide from the oxidative burst is neither necessary nor sufficient for hypersensitive cell death induction, phenylalanine ammonia lyase stimulation, salicylic acid accumulation, or scopoletin consumption in cultured tobacco cells treated with elicitin. Plant Physiol. 121: 163–171

    Google Scholar 

  • Dornenburg H & Knorr D (1994) Effectiveness of plant-derived and microbial polysaccharides as elicitors for anthraquinone synthesis in Morinda citrifolia cultures. J Food Agric. Chem. 42: 1048–1052

    Google Scholar 

  • Dornenburg H & Knorr D (1995) Strategies for the improvement of secondary metabolite production in plant cell cultures.Enz. Microb. Technol. 17: 674–684

    Google Scholar 

  • Dubery IA, Louw AE & van Heerden FR (1999) Synthesis and evaluation of 4-(3-methyl-2-butenoxy) isonitrosoacetophenone, a radiation-induced stress metabolite in citrus. Phytochemistry. 50: 983–989

    Google Scholar 

  • Durner J and Klessig DF (1999) Nitric oxide as a signal in plants. Curr. Opin. Plant Biol. 2: 369–374

    Google Scholar 

  • Durner J, Wendehenne D & Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 95: 10328–10333

    Google Scholar 

  • Eberhard S, Doubrava N, Marfa V, Mohnen D, Southwick A, Darvill A & Albersheim P (1989) Plant cell wall fragments regulate tobacco thin-cell-layer explant morphogenesis. Plant Cell 1: 747–755

    Google Scholar 

  • Edwards R (1996) S-adenosyl-L-methionine metabolism in alfalfa cell cultures following treatment with fungal elicitors. Phytochemistry 43: 1163–1169

    Google Scholar 

  • Eilert U (1987) Elicitation: methodology and aspects of application. In: Vasil IK & Constable F (eds) Cell Culture and Somatic Cell Genetics of Plants, Vol 4 (pp 153–196). Academic Press, San Diego, CA

    Google Scholar 

  • Eilert U, Kurz WGW & Constable F (1985) Stimulation of sanguinarine accumulation in Papaver somniferum cell cultures by fungal elicitors. J. Plant Physiol. 119: 65–76

    Google Scholar 

  • Ellis J, Lawrence G, Ayliffe M, Anderson P, Collins N, Finnegan J, Frost D, Luck J & Pryor T (1997) Advances in the molecular genetic analysis of the flax-flax rust interaction. Annu. Rev. Phytopathol. 35: 271–291

    Google Scholar 

  • Enyedi AJ, Yalpani N, Silverman P & Raskin I (1992) Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc. Natl. Acad. Sci. USA 89: 2480–2484

    Google Scholar 

  • Facchini PJ (1998) Temporal correlation of tryptamine metabolism with alkaloid and amide biosynthesis in elicited opium poppy cell cultures. Phytochemistry 49: 481–490

    Google Scholar 

  • Fang Y, Smith MAL & Pepin M-E (1999) Effects of exogenous methyl jasmonate in elicited anthocyanin-producing cell cultures of Ohelo (Vaccinium pahalae). In Vitro Cell Dev. Biol. Plant. 35: 106–113

    Google Scholar 

  • Farmer EE & Ryan CA (1989) Phosphorylation of plant plasmamembrane proteins in response to oligosaccharides that regulate proteinase inhibitor gene expression. In: Lugtenberg BJJ (ed) Signal Molecules in Plants and Plant-Microbe Interactions (pp 49–56). Springer, Berlin, Heidelberg

    Google Scholar 

  • Farmer EE & Ryan CA (1990) Interplant communication: airborne methyljasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 87: 7713–7716

    Google Scholar 

  • Farmer EE & Ryan CA. (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound inducible proteinase inhibitors. Plant Cell 4: 129–134

    Google Scholar 

  • Farmer EE, Pearce G & Ryan CA (1989) In vitro phosphorylation of plasma membrane proteins in response to the proteinase inhibitor inducing factor. Proc. Natl. Acad. Sci. USA 86: 1539–1542

    Google Scholar 

  • Felix G, Grosskopf DG, Regenass M & Boller T (1991) Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proc. Natl. Acad. Sci. USA 88: 8831–8834

    Google Scholar 

  • Feng J & Barker AV (1993) Polyamine concentration and ethylene evolution in tomato plants under nutritional stress. Hortscience 28: 109–110

    Google Scholar 

  • Ferguson IB (1983) Calcium stimulation of ethylene production induced by 1-aminocyclopropane-1-carboxylic acid and indole-3-acetic acid. J Plant Growth Regul. 2: 205–214

    Google Scholar 

  • Feurstein BG & Marton LG (1989) Specificity and binding in polyamine/nucleic acid interactions. In: Bachrach U & Heimer YM (eds) The Physiology of Polyamines, Vol 1 (pp. 109–120). CRC Press, Boca Raton, FL

    Google Scholar 

  • Feys BJ & Parker JE (2000) Interplay of signaling pathways in plant disease resistance. Trends Genet. 16: 449–455

    Google Scholar 

  • Fidantsef AL, Stout MJ & Thaler JS (1999) Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum. Physiol. Mol. Plant Pathol. 54: 97–114

    Google Scholar 

  • Flor H (1971) Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9: 275–296

    Google Scholar 

  • Flores HE & Galston AW (1982) Analysis of polyamines in higher plants. Plant Physiol. 69: 701–706

    Google Scholar 

  • Flores HE & Galston AW (1984) Osmotic stress-induced polyamine accumulation in cereal leaves. Plant Physiol. 75: 102–113

    Google Scholar 

  • Flores HE, Protacio CM & Signs MW (1989) Primary and secondary metabolism of polyamines in plants. Rec. Adv. Phytochem. 23: 329–393

    Google Scholar 

  • Floryszak-Wieczorek J & Krzywanski Z (1985) Lipoxygenase activity and malonaldehyde content in potato tuber inoculated with Phytophthora infestans Mont. De Bary. Acta Physiol. Plant. 7: 149–157

    Google Scholar 

  • Floryszak-Wieczorek J & Stroinski A (1986) Postinfectional changes of lipid metabolism in tuber resistant and susceptible to Phytophthora infestans.J. Phytopathol. 116: 135–146

    Google Scholar 

  • Foster SA & Walters DR (1993) Fungicidal activity of the polyamine analog, keto-putrescine. Pestic. Sci. 37: 267–272

    Google Scholar 

  • Franceschi VR & Grimes HD (1991) Induction of soybean vegetative storage proteins and anthocyanins by low-level atmospheric methyl jasmonate. Proc. Natl. Acad. Sci. USA 88: 6745–6749

    Google Scholar 

  • Fry SC, Aldington S, Hetherington PR & Aitken J (1993) Oligosaccharides as signal and substrates in the plant cell wall. Plant Physiol. 103: 1–5

    Google Scholar 

  • Fu X-Q & Lu D-W (1999) Stimulation of shikonin production by combined fungal elicitation and in situ extraction in suspension cultures of Arnebia euchroma. Enz. Microb. Technol. 24: 243–246

    Google Scholar 

  • Funk C & Brodelius P (1990) Influence of growth regulators and an elicitor on phenylpropanoid metabolism in suspension cultures of Vanilla planifolia. Phytochemistry 29: 845–848

    Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Wegrotto D, Nye G, Uknes S, Ward E, Kessmann H & Ryals S (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754–756

    Google Scholar 

  • Gagnon H & Ibrahim RK (1997) Effects of various elicitors on the accumulation and secretion of isoflavonoids in white lupin. Phytochemistry 44: 1463–1467

    Google Scholar 

  • Galston AW (1983) Polyamines as modulators of plant development. Bioscience 33: 382–388

    Google Scholar 

  • Galston AW & Kaur Sawhney RK (1990) Polyamines in plant physiology. Plant Physiol. 94: 406–410

    Google Scholar 

  • Gelli A, Higgins VJ & Blumwald E (1997) Activation of plant plasma membrane C2+ permeable channels by race-specific fungal elicitors. Plant Physiol. 113: 269–279

    Google Scholar 

  • Genoud T & Metraux JP (1999) Crosstalk in plant cell signaling: structure and function of the genetic network. Trends Plant Sci. 4: 503–507

    Google Scholar 

  • Ghachtouli N El, Martin-Tanguy J, Paynot M & Gianiazzi S (1996) First report of the inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of polyamine biosynthesis or by gibberellic acid treatment. FEBS Lett. 385: 189–192

    Google Scholar 

  • Gillet F, Roisin C, Fliniaux MA, Jacquin-Dubreuil A, Barbotin JN & Nava-saucedo JE (2000) Immobilisation of Nicotiana tabacum plant cell suspensions within calcium alginate gel beads for the production of enhanced anounts of scopolin. Enz. Microb. Technol. 26: 229–234

    Google Scholar 

  • Gilroy S & Jones RL (1992) Gibberellic acid and abscissic acid coordinately regulate cytoplasmic calcium and secretory activity in barley aleurone protoplasts. Proc. Natl. Acad. Sci. USA 89: 3591–3595

    Google Scholar 

  • Gilroy S, Fricker MD, Read ND & Trewavas AJ (1992) The role of Ca2+ and ABA in the regulation of stomatal aperture. In: Karssen CM, van Loon LC & Vreugdenhil D (eds) Progress in Plant Growth Regulation (pp 105–115). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Goto M, Yaguchi Y & Hyodo H (1980) Ethylene production in citrus leaves infected with Xanthomonas citri and its relation to defoliation. Physiol. Plant Pathol. 16: 343–350

    Google Scholar 

  • Greenland AJ & Lewis DH (1984) Amines in barley leaves infected by brown rust and their possible relevance to formation of 'green islands'. New Phytol. 96: 283–291

    Google Scholar 

  • Grosskopf DG, Felix G & Boller T (1990) K-252a inhibits the response of tomato cells to fungal elicitors in vivo and their microsomal protein kinase in vitro. FEBS Lett. 275: 177–180

    Google Scholar 

  • Guilfoyle TJ, Hagen G, Li Y, Gee MA, Martin G & Ulmasov TN (1992) Transcriptional regulation of auxin-responsive genes. In: Karssen CM, van Loon LC & Vreugdenhil D (eds) Progress in Plant Growth Regulation (pp 128–135). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Guiltinan MJ, Marcotte WR & Quantrano RS (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250: 267–271

    Google Scholar 

  • Gundlach H & Zenk MH (1998) Biological activity and biosynthesis of pentacyclic oxylipins: the linoleic acid pathway. Phytochemistry 47: 527–537

    Google Scholar 

  • Gundlach H, Muller MJ, Kutchan TM & Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci. USA 89: 2389–2393

    Google Scholar 

  • Guo X, Li G, Shang Z, Li X & Liu Y (1999) Relationship between free polyamines and resistance of tobacco to TMV. Hebei Nongye Daxue Xuebao. 22: 32–35

    Google Scholar 

  • Hahn MG (1996) Microbial elicitors and their receptors in plants. Annu. Rev. Phytopathol. 34: 387–412

    Google Scholar 

  • Hahn MG, Bucheli P, Cervone F, Doares SH, O'Neill RA, Darvill AG & Albersheim P (1989) The role of cell wall constituents in plant-pathogen interactions. In: Nester E & Kosuge T (eds) Plant-Microbe Interactions, Vol. 3 (pp 131–181). McGraw Hill, New York

    Google Scholar 

  • Hahn MG, Darvill AG & Albersheim P (1981) Host-pathogen interactions XIX. The endogenous elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans. Plant Physiol. 68: 1161–1169

    Google Scholar 

  • Hammond-Kosack KE & Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8: 1773–1791

    Google Scholar 

  • Hepler PK & Wayne RO (1985) Calcium and plant development. Annu. Rev. Plant Physiol. 36: 397–439

    Google Scholar 

  • Herrmann G, Lehmann J, Peterson A, Sembdner G, Weidhase RA & Parthier B (1989) Species and tissue specificity of jasmonate-induced abundant proteins. J. Plant Physiol. 134: 703–709

    Google Scholar 

  • Hesse T, Feldwisch J, Balshusemann D, Bauw G, Pupye M, Vandekerckhove J, Lobler M, Klambt D, Schell J & Palme K (1989) Molecular cloning and structural analysis of a gene from Zea mays (I) coding for a putative receptor for the plant hormone auxin. EMBO J. 8: 2453–2461

    Google Scholar 

  • Hetherington AM, Gray JE, Leckie CP, McAinsh MR, Ng C, Pical C, Priestley C, Staxen I & Webb AAR. (1998) The control of specificity in guard cell signal transduction. Phil. Trans. Royal Soc. London B 353: 1489–1494

    Google Scholar 

  • Hoffman T, Schmidt JS, Zheng XY & Bent AF (1999) Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol. 119: 935–949

    Google Scholar 

  • Holton TA & Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell. 7: 1071–1083

    Google Scholar 

  • Hooley R, Beale MH & Smith SJ (1991) Gibberellin perception at the plasma membrane of Avena fatua aleurone protoplasts. Planta 183: 274–280

    Google Scholar 

  • Hopke J, Donath J, Blechert S & Boland W (1994). Herbivore-induced volatiles: the emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a β-glucosidase and jasmonic acid.FEBS Lett. 352: 146–150

    Google Scholar 

  • Hornberg C & Weiler EW (1984) High-affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells. Nature 310: 321–324

    Google Scholar 

  • Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR & Meyeerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10: 1321–1332

    Google Scholar 

  • Hulbert SH (1997) Stucture and evolution of the rp1 complex conferring rust resistance in maize. Annu. Rev. Phytopathol. 35: 293–310

    Google Scholar 

  • Hutcheson SW (1998) Current concepts of active defense in plants. Annu. Rev. Phytopathol. 36: 59–90

    Google Scholar 

  • Huttly AK, Phillips AL & Tregear JW (1992) Localisation of cis elements in the promoter of a wheat alpha-amy-2 gene. Plant Mol. Biol. 19: 903–911

    Google Scholar 

  • Jabs T, Tschope M, Colling C, Hahlbrock K & Scheel D (1997) Elicitor-stimulated ion fluxes and O2 - from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc. Natl. Acad. Sci. USA. 94: 4800–4805

    Google Scholar 

  • Jacob ST & Stetler DA (1989) Polyamines and RNA synthesis. In: Bachrach U & Heimer QM (eds) The Physiology of Polyamines, Vol I (pp 133–140). CRC Press, Boca Raton, FL

    Google Scholar 

  • Ji C, Smith-Becker J & Keen NT (1998) Genetics of plant-pathogen interactions. Curr. Opin. Biotechnol. 9: 202–207

    Google Scholar 

  • Jin DF & West CA (1984) Characteristics of galacturonic acid oligomers as elicitors of casbene synthase activity in castor bean seedlings. Plant Physiol. 74: 989–992.

    Google Scholar 

  • Joseph LM, Koon TT & Man WS (1998) Antifungal effects of hydrogen peroxide and peroxidase on spore germination and mycelial growth of Pseudocercospora species. Can. J. Bot. 76: 2119–2124

    Google Scholar 

  • Joye LB & David JG (1991) Calcium and phosphate effect on growth and alkaloid production in Coffea arabica: experimental results and mathematical model. Biotechnol. Bioeng. 37: 859–868

    Google Scholar 

  • Kachroo P, Yoshioka K, Shah J, Doomer HK & Klessig DF (2000) Resistance to turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene and jasmonic acid independent. Plant Cell 12: 677–690

    Google Scholar 

  • Karban R (2001) Communication between sagebrush and wild tobacco in the field. Biochem. Syst. Ecol. 29: 995–1005

    Google Scholar 

  • Katz VA, Thulke OU & Conrath U (1998) A benzothiadiazole primes parsley cells for augmented elicitation of defense responses. Plant Physiol. 117: 1333–1339

    Google Scholar 

  • Kaur Sawhney R, Dai Y & Galston AW (1986) Effect of inhibitors of polyamine biosynthesis on gibberellin-induced internode growth in light-grown dwarf peas. Plant Cell Physiol. 27: 253–260

    Google Scholar 

  • Kauss H (1994) Systematic signals condition pant cells for increased elicitation of diverse defense responses. Biochem. Soc. Symp. 60: 95–100

    Google Scholar 

  • Kauss H & Jeblick W (1995) Pretreatment of parsley suspension cultures with SA enhances spontaneous and elicited production of H2O2. Plant Physiol. 108: 1171–1178

    Google Scholar 

  • Kauss H, Koehle H & Jebelick W (1983) Proteolytic activation and stimulation by calcium of glucan synthase from soybean cells. FEBS Lett. 158: 84–88

    Google Scholar 

  • Keen NT, Yoshikawa M & Wang MC (1983) Phytoalexin elicitor activity of carbohydrates from Phytophthora megasperma f.sp. glycinea and other sources. Plant Physiol. 71: 466–471

    Google Scholar 

  • Keith LW, Boyd C, Keen NT & Patridge JE (1997) Comparison of avrD allele from Pseudomonas syringae pv. glycinea. Mol. Plant Microbe Interact. 10: 416–422

    Google Scholar 

  • Keller H, Blein JP, Bonnet P & Ricci P (1996) Physiological and molecular characteristics of elicitin-induced systemic acquired resistance in tobacco. Plant Physiol. 110: 365–376

    Google Scholar 

  • Ketchum RE, Tandon M, Gibson DM, Begley T & Shuler ML (1999) Isolation of labeled 9-dihydroxybaccatin III and related taxoids from cell cultures of Taxus canadensis elicited with methyl jasmonate. J. Nat. Prod. 62: 1395–1398

    Google Scholar 

  • Kiegle E, Gilliham M, Haseloff J & Tester M (2000) Hyperpolarisation-activated calcium currents found only in cells of the elongation zone of Arabidopsis thaliana roots. Plant J 21: 225–229

    Google Scholar 

  • Kim JH, Shin JH, Lee HJ, Cheung IS & Lee HJ (1997) Effect of chitosan on indirubin production from suspension cultures of Polygonum tinctorium. J Ferm. Bioeng. 83: 206–208

    Google Scholar 

  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E & Silva H (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc. Natl. Acad. Sci. USA 97: 8849–8855

    Google Scholar 

  • Knoester M, Van Loon LC, Van den Heuvel J, Hennig J, Bol JF & Linthorst HJM (1998) Ethylene-insensitive tobacco lacks non host resistance against soil-borne fungi. Proc. Natl. Acad. Sci. USA 95: 1933–1937

    Google Scholar 

  • Knogge W (1996) Fungal infections of plants. Plant Cell. 8: 1711–1722

    Google Scholar 

  • Koch T, Krumm T, Jung V, Engelberth J & Boland W (1999) Differential induction of plant volatile biosynthesis in lima bean by early and late intermediates of the octadecanoid-signaling pathway. Plant Physiol. 121: 153–162

    Google Scholar 

  • Kombrink E & Somssich IE (1995) Defense responses of plants to pathogens. Adv. Bot. Res. 21: 1–34

    Google Scholar 

  • Kopp M, Rouster J, Fritig B, Darvill A & Albersheim P (1989) Host-pathogen interactions. XXXII. A fungal glucan preparation protects Nicotianae against infections by viruses. Plant Physiol. 90: 208–216

    Google Scholar 

  • Kutchan TM (1995) Alkaloid biosynthesis -The basis for metabolic engineering of medicinal plants. Plant Cell 7: 695–700

    Google Scholar 

  • Lamb C & Dixon R (1997) The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 251–271

    Google Scholar 

  • Lawton KA, Potter SL, Uknes S & Ryals J (1994) Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell 6: 581–588

    Google Scholar 

  • Le Rudulier D & Goas G (1975) Influence des ions ammonium et potassium sur l'accumulation de la putrescine chez les jeunes plantes de soja hispida Moench privees de leurs cotyledons. Physiol. Veg. 13: 125–136

    Google Scholar 

  • Leach JE & White FF (1996) Bacterial avirulence gene. Annu. Rev. Phytopathol. 34: 153–179

    Google Scholar 

  • Lee J, Vogt T, Schmidt J, Parthier B & Lobler M (1997) Methyljasmonate-induced accumulation of coumaroyl conjugates in barley leaf segments. Phytochemistry 44: 589–592

    Google Scholar 

  • Lee J-Y, Yoo B-C & Harmon A (1998) Kinetic and calcium-binding properties of three calcium-dependent kinase isozymes from soyabean. Biochemistry. 37: 6801–6809

    Google Scholar 

  • Lee S-C & West C (1981) Polygalacturonase from Rhizopus stolonifer, an elicitor of casbene synthase activity in castor bean (Ricinus communis L) seedlings. Plant Physiol. 67: 633–639

    Google Scholar 

  • Leon J, Lawton MA & Raskin I (1995) Hydrogen peroxide stimulates SA biosynthesis in tobacco. Plant Physiol. 108: 1673–1678

    Google Scholar 

  • Levine A, Tenhaken R, Dixon RA & Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593

    Google Scholar 

  • Levine A, Pennel RI, Alvarez ME, Palmer R & Lamb C (1996) Calcium-mediated apoptosis in a plant hypersensitive resistance response. Curr. Biol. 6: 427–437

    Google Scholar 

  • Lieberman M & Wang SY (1982) Influence of calcium and magnesium on ethylene production by apple tissue slices. Plant Physiol. 69: 1150–1155

    Google Scholar 

  • Linden JC & Phisalaphong M (2000) Oligosaccharides potentiate methyl jasmonate-induced production of paclitaxel in Taxus canadensis. Plant Sci. 158: 41–51

    Google Scholar 

  • Lobler M & Krambt D (1985) Auxin-binding protein from coleoptile membranes of corn (Zea mays). I. Purification by immunological methods and characterization. J Biol. Chem. 260: 9848–9853

    Google Scholar 

  • Lomax TL & Hicks GR (1992) Specific auxin-binding proteins in the plasma membrane: receptors or transporters? Biochem. Soc. Trans. 20: 64–69

    Google Scholar 

  • Lorang JM & Keen NT (1995) Characterization of avrE from Pseudomonas syringae pv. Tomato: a hrp-linked avirulence locus consisting of at least two transcriptional units. Mol. Plant-Microbe Interact. 8: 49–57

    Google Scholar 

  • Lovegrove A & Hooley R (2000) Gibberellin and abscisic acid signalling in aleurone. Trends Plant Sci. 5: 102–110

    Google Scholar 

  • Lugtenberg BJJ (1989) Signal molecules in plants and plant-microbe interactions. Springer, Berlin, Heidelberg

    Google Scholar 

  • Lund ST, Stall RE & Klee HJ (1998) Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10: 371–382

    Google Scholar 

  • Mahady GB & Beecher CWW (1994) Elicitor-stimulated benzo-phenanthridine alkaloid biosynthesis in bloodroot suspension cultures is mediated by calcium. Phytochemistry 37: 415–419.

    Google Scholar 

  • Mahady GB, Liu C & Beecher CWW (1998) Involvement of protein kinase and G proteins in the signal transduction of benzophenan-thridine alkaloid biosynthesis. Phytochemistry 48: 93–102

    Google Scholar 

  • Majewska-Sawka A, Butowt R & Niklas A (1998) Do Polyamines release membrane-bound calcium in sugar beet protoplasts? J. Plant Physiol. 153: 247–250

    Google Scholar 

  • Maleck K & Dietrich RA (1999) Defense on multiple fronts: how do plants cope with diverse enemies? Trends Plant Sci. 4: 215–219

    Google Scholar 

  • Malamy J, Carr JP, Klessig DF & Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250: 1002–1004

    Google Scholar 

  • Malmberg RL & McIndoo J (1983) Abnormal floral development of a tobacco mutant with elevated polyamine levels. Nature 305: 623–625

    Google Scholar 

  • Marero LM, Jin JH, Shin JH, Lee HJ, Chung IS & Lee HJ (1997) Effect of fungal elicitation on indirubin production from a suspension culture of Polygonum tinctorium. Enz. Microb. Technol. 21: 97–101

    Google Scholar 

  • Margarita C, Margarita M, Jorge FT & Purificacion C (1995). Calcium restriction induces cardenolide accumulation in cell suspension cultures of Digitalis thapsi L. Plant Cell Rep. 14: 786–789

    Google Scholar 

  • Mariani P, D'orazi D & Bagni N (1989) Polyamines in primary walls of carrot cells: endogenous content and interactions. J. Plant Physiol. 135: 508–510

    Google Scholar 

  • Martin-Tanguy J (1987) Hydroxycinnamic acid amides, hypersensitivity, flowering and sexual organogenesis in plants. In: Von Wettstein D & Chua D (eds) Plant Molecular Biology (pp 253–263). Plenum, New York

    Google Scholar 

  • Mathieu Y, Kurkdjian A, Xia H, Guern J, Koller A, Spiro MD, O'Neill MA, Albersheim P & Darvill A (1991) Membrane responses induced by oligogalacturonides in suspension-cultured tobacco cells. Plant J. 1: 333–343

    Google Scholar 

  • McAinsh MR, Gray JE, Hetherington AM, Leckie CP & Ng C (2000) Ca2+ signalling in stomatal guard cells. Biochem. Soc. Trans. 28: 476–481

    Google Scholar 

  • McConn M, Creelman RA, Bell E, Mullet JE & Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 95: 15107–15111

    Google Scholar 

  • Memelink J, Verpoorte R & Kijne JW (2001) ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci. 6:5: 212–219

    Google Scholar 

  • Mercier L, Lafitte C, Borderies G, Briand K, Esquirre Tugaye MT & Fournier J (2001) The algal polysaccharide carrageenans can act as an elicitor of plant defense. New Phytol. 149: 43–51

    Google Scholar 

  • Messiaen J, Cambier P & Van Cutsem P (1997) Polyamines and Pectins. I. Ion exchange and selectivity. Plant Physiol. 113: 387–395

    Google Scholar 

  • Messiaen J, Read ND, Van Cutsem P & Trewavas AJ (1993) Cell wall oligogalacturonides increase cytosolic free calcium in carrot protoplasts. J. Cell Sci. 194: 365–371

    Google Scholar 

  • Messiaen J & Van Cutsem P (1994) Pectic signal transduction in carrot cells: membrane, cytosolic and nuclear responses induced by oligogalacturonides. Plant Cell Physiol. 35: 677–689

    Google Scholar 

  • Metraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin L, Raschdorf K, Blum W & Inverardi B (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250: 1004–1006

    Google Scholar 

  • Millar AH & Day DA (1997) An alternative solution to a radical problem. Trends Plant Sci. 2: 289–290.

    Google Scholar 

  • Mirjalili N & Linden J-C (1995) Gas phase composition effects on suspension cultures of Taxus cuspidata. Biotechnol. Bioeng. 48: 123–132

    Google Scholar 

  • Mithofer A, Daxberger A, Fromhold-Treu D & Ebel J (1997) Involvement of an NAD(P)H oxidase in the elicitor-inducible oxidative burst of soybean. Phytochemistry 45: 1101–1107

    Google Scholar 

  • Moore I, Feldwisch J, Campos N, Zettl R, Bzobohaty B, Bako L, Schell J & Palme K (1992) Auxin-binding proteins of Zea mays identified by photoaffinity labeling. Biochem. Soc. Trans. 20: 70–73

    Google Scholar 

  • Moreno PRH, Poulsen C, van der Heijden R & Verpoorte R (1996) Effects of elicitation on different metabolic pathways in Catharanthus roseus (L.) G. Don cell suspension cultures. Enzy. Microb. Technol. 18: 99–107

    Google Scholar 

  • Mueller MJ (1997) Enzymes involved in jasmonic acid biosynthesis. Physiol. Plant. 100: 653–663

    Google Scholar 

  • Mukundan U & Hjortso MA (1990). Effect of fungal elicitor on thiophene production in hairy root cultures of Tagetes patula. Appl. Microbiol. Biotechnol. 33: 145–147

    Google Scholar 

  • Mundy J, Yamaguchi-Shinozaki K & Chua N-H (1990) Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc. Natl. Acad. Sci. USA 87: 1406–1410

    Google Scholar 

  • Mur LAJ, Brown IR, Darby RM, Bestwick CS, Bi YM, Mansfield JW & Draper J (2000) A loss of resistance to avirulent bacterial pathogens in tobacco is associated with the attenuation of a salicylic acid-potentiated oxidative burst. Plant J. 23: 609–621

    Google Scholar 

  • Murthy KS, Smith TA & Bould C (1971) The relation between the putrescine content and potassium status of black currant leaves. Ann. Bot. 35: 687

    Google Scholar 

  • Mussell HW (1973) Endopolygalaturonase: evidence for involvement in Verticillium wilt of cotton. Phytopathology 63: 62–70

    Google Scholar 

  • Nakao M, Ono K & Takio S (1999) The effects of calcium on flavanol production in cell suspension cultures of Polygonum hydropiper. Plant Cell Rep. 18: 759–763

    Google Scholar 

  • Nagao RT, Goekjian VH, Hong JC & Key JL (1993) Identification of protein-binding DNA sequences in an auxin-regulated gene of soybean. Plant Mol. Biol. 21: 1147–1162

    Google Scholar 

  • Navarre DA, Wendehenne D, Durner J, Noad R & Klessig DF (2000) Nitric oxide modulates the activity of tobacco aconitase. Plant Physiol. 122: 573–582

    Google Scholar 

  • Nawrath C & Metraux J-P (1999) Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell. 11: 1393–1404

    Google Scholar 

  • Neuhaus G, Bowler C, Kern R & Chua N-H (1993) Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways. Cell 73: 937–952

    Google Scholar 

  • Newton RP, Roef L, Witters E & Van Onckelen H (1999) Cyclic nucleotides in higher plants: the enduring paradox. New Phytol. 143: 427–455

    Google Scholar 

  • Ni W, Fahrendorf T, Ballance GM, Lamb CJ & Dixon RA (1996) Stress responses in alfalfa (Medicago sativa L.) XX. Transcriptional activation of phenylpropanoid pathway genes in elicitor-treated cell suspension cultures. Plant Mol. Biol. 30: 427–438

    Google Scholar 

  • Niki T, Mitsuhara I, Seo S, Ohtsubo N & Ohashi Y (1998) Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol. 39: 500–507

    Google Scholar 

  • Ning W, Wang J-Xi, Liu Y-M, Li N & Cao R-Q (1998) The effects of CaSUP2+/SUP during the elicitation of shikonin derivatives in Onosma Paniculatum cells. In Vitro Cell Dev. Biol. Plant 34: 261–265

    Google Scholar 

  • Njoroge CK, Kerbel EL & Briskin DP (1998) Effect of calcium and calmodulin antagonists on ethylene biosynthesis in tomato fruits. J. Sci. Food Agric. 76: 209–214.

    Google Scholar 

  • Nothnagel EA, Mc Neil M, Albersheim P & Dell A (1983) Host-pathogen interactions.XXII. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins. Plant Physiol. 71: 916–926

    Google Scholar 

  • Nurnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K & Scheel D (1994) High-affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78: 449–460

    Google Scholar 

  • Nurnberger T, Wirtz W, Nennstiel D, Hahlbrock K, Jabs T, Zimmermann S & Scheel D (1997) Signal perception and intracellular signal transduction in plant pathogen defence. J. Receptor Signal Transduction Res. 17: 127–136

    Google Scholar 

  • O'Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO & Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274: 1914–1917

    Google Scholar 

  • Oldroyd GE & Staskawicz BJ (1998) Genetically engineered broad-spectrum disease resistance in tomato. Proc. Natl. Acad. Sci. USA 95: 10300–10305

    Google Scholar 

  • Padgett HS, Watanabe Y & Beachy RN (1997) Identification of the TMV replicase sequence that activates the N gene-mediated hypersensitive response. Mol. Plant Microbe Interact. 10: 709–715

    Google Scholar 

  • Pannuri S, Reddy GR, McNeill D & Curtis WR (1993) Interpreting the role of phophorus and growth rate in enhanced fungal induction of sesquiterpenes from Hyoscyamus muticus root cultures. Appl. Microbiol. Biotechnol. 38: 550–555

    Google Scholar 

  • Parchmann S, Gundlach H & Mueller MJ (1997) Induction of 12-oxo-phytodienoic acid in wounded plants and elicited plant cell cultures. Plant Physiol. 115: 1057–1064

    Google Scholar 

  • Pare PW & Tumlinson JH (1997) De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol. 114: 1161–1167

    Google Scholar 

  • Patier P, Potin P, Rochas C, Kloareg B, Yvin JC & Liénart Y (1995) Free or silica-bound oligokappa-carrageenans elicit laminarase activity in Rubus cells and protoplasts. Plant Sci. 110: 27–35

    Google Scholar 

  • Pedapudi S, Chin C-K & Pedersen H (2000) Production and elicitation of benzalacetone and the raspberry ketone in cell suspension cultures of Rubus idaeus. Biotech. Prog. 16: 346–349

    Google Scholar 

  • Pegg GF (1981) The involvement of growth regulators in the diseased plant. In: Ayres PG (ed) Effects of Disease on the Physiology of the Growing Plant (pp 149–178). Cambridge University Press, New York

    Google Scholar 

  • Pegg GF & Cronshaw DK (1976) The relationship of in vitro and in vivo ethylene production in Pseudomonas solanacearum infection of tomato. Physiol. Plant Pathol. 9: 145–154

    Google Scholar 

  • Pena-Cortes H, Albrecht T, Prat S, Weiles EW & Willmitzer L (1993) Aspirin prevents wound-induced gene expression in tomato leaves by blocking JA biosynthesis. Planta 191: 123–128

    Google Scholar 

  • Penninckx IAMA, Eggermont K, Terras FRG, Thomma BPHJ, De Samblanx GW, Buchala A, Matraux J-P, Manners JM & Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8: 2309–2323

    Google Scholar 

  • Penninckx IAMA, Thomma BPHJ, Buchala A, Matraux J-P & Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathway is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10: 2103–2113

    Google Scholar 

  • Petruccioli M, Federici F, Bucke C & Keshavarz T (1999) Enhancement of glucose oxidase production by Penicillium variable P16. Enz. Microb. Technol. 24: 397–401

    Google Scholar 

  • Pieterse CMJ & van Loon LC (1999) Salicylic acid-independent plant defense pathways. Trends Plant Sci. 4: 52–58

    Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeck PJ & Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10: 1571–1580

    Google Scholar 

  • Pitta-Alvarez ST, Spollansky TC & Giulietti AM (2000) The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugsmansia candida. Enz. Microb. Technol. 26: 252–258

    Google Scholar 

  • Preston CA, Laue G & Baldwin IT (2001) Methyl jasmonate is blowing in the wind, but can it act as a plant-plant airborne signal? Biochem. Syst. Ecol. 29: 1007–1023

    Google Scholar 

  • Price AH, Taylor A, Ripley SJ, Griffiths A, Trewavas AJ & Knight MR (1994) Oxidative signals in tobacco increase cytosolic calcium. Plant Cell. 6: 1301–1310

    Google Scholar 

  • Raghothama KG, Mizrahi Y & Poovaiah BW (1985) Effect of calmodulin antagonists on auxin-induced elongation. Plant Physiol. 79: 28–33

    Google Scholar 

  • Rajasekhar VK, Lamb C & Dixon RA (1999) Early event in the signalling pathway for the oxidative burst in soybean cells exposed to avirulent Pseudomonas syringae pv. glycinea. Plant Physiol. 120: 1137–1146

    Google Scholar 

  • Rajendran L, Suvarnalatha G, Ravishankar GA & Venkataraman LV (1994) Enhamcement of anthocyanin production in callus cultures of Daucus carota L. under the influence of fungal elicitors. Appl. Microbiol. Biotechnol. 42: 227–231

    Google Scholar 

  • Ramakrishna SV, Reddy RG, Curtis WR & Humphry AE (1993) Stimulation of solavetivone synthesis in free and immobilised cells of Hyocyamus muticus by Rhizoctonia solani fungal components. Biotech. Lett. 15: 307–310

    Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP, Murr DP & Watkins CB (1997) Influence of salicylic acid on H2O2 production, oxidative stress and H2O2-metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H2O2. Plant Physiol. 115: 137–149

    Google Scholar 

  • Rao SR, Sarada R & Ravishankar GA (1996) Phycocyanin, a new elicitor for capsaicin and anthocyanin accumulation in plant cell cultures. Appl. Microbiol. Biotechnol. 46: 619–621

    Google Scholar 

  • Raskin I (1992) Salicylate, a new plant hormone? Plant Physiol. 99: 799–803

    Google Scholar 

  • Rasmussen JB, Hammerschmidt R & Zook MN (1991) Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. syringae. Plant Physiol. 97: 1342–1347

    Google Scholar 

  • Rastogi R & Davies PJ (1991) Effects of light and plant growth regulators on polyamine metabolism in higher plants. In: Slocum RD & Flores HE (eds) Biochemistry and Physiology of Polyamines in Plants (pp 187–198). CRC Press, Boca Raton, FL

    Google Scholar 

  • Ravishankar GA & Rao SR (2000) Biotechnological production of phytopharmaceuticals. J. Biochem. Mol. Biol. Biophys. 4: 73–102

    Google Scholar 

  • Reinbothe C, Annegrel T, Lehman J, Parthier B & Reinbothe S (1994) Induction by methyl jasmonate of embryogenesis-related proteins and mRNAs in Nicotiana plumbaginifolia. Plant Sci. 104: 59–70

    Google Scholar 

  • Reiss CS & Komatsu T (1998) Does nitric oxide play a critical role in viral infections? J Virol. 72: 4547–4551

    Google Scholar 

  • Reymond P & Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1: 404–411

    Google Scholar 

  • Rhodes MJC, Parr AJ, Giuletti A & Aird ELH (1994) Influence of exogenous hormones on the growth and secondary metabolite formation in transformed root cultures. Plant Cell Tiss. Org. Cult. 38: 143–151

    Google Scholar 

  • Ritchie S & Gilroy S (1998) Calcium-dependent protein phosphorylation may mediate the gibberellic acid response in barley aleurone. Plant Physiol. 116: 765–776.

    Google Scholar 

  • Ritter C & Dangl JL (1995) The avrRpm1 genes of Pseudomonas syringae pv. maculicola is required for virulence on Arabidopsis. Mol. Plant Microbe-Interact. 8: 444–453

    Google Scholar 

  • Robertsen B (1986) Elicitors of the production of lignin-like compounds in cucumber hypocotyls. Physiol. Mol. Plant Pathol. 28: 137–148

    Google Scholar 

  • Rock CD (2000) Pathways to abscisic acid-regulated gene expression. New Phytol. 148: 357–396

    Google Scholar 

  • Rogers JC & Rogers SC (1992) Definition and functional implications of gibberellic acid and abscisic acid cis-acting hormone reverse complexes. Plant Cell. 4: 1443–1451

    Google Scholar 

  • Rommens CM, Salmeron JM, Oldroyd GE & Staskawicz BJ (1995) Intergeneric transfer and functional expression of the tomato disease resistance gene Pto. Plant Cell 7: 1537–1544

    Google Scholar 

  • Rosano CL & Hurwitz C (1969) Interrelationship between magnesium and polyamines in a pseudomonad lacking spermidine. Biochem. Biophys. Res. Commun. 37: 677–683

    Google Scholar 

  • Ruck A, Palme K, Venis MA, Napier RM & Felle HH (1993) Patch-clamp analysis establishes a role for an auxin-binding protein in the auxin stimulation of plasma membrane current in Zea mays protoplasts. Plant J. 4: 41–46

    Google Scholar 

  • Rushton PJ, Hooley R & Lazarus CM (1992) Aleurone nuclear proteins bind to similar elements in the promoter regions of two gibberellin-regulated alpha-amylase genes. Plant Mol. Biol. 19: 891–901

    Google Scholar 

  • Rusterucci C, Stallaert V, Milat M-L, Pugin A, Ricci P & Blein J-P (1996) Relationship between active oxygen species, lipid peroxidation, necrosis and phytoalexin production induced by elicitins in Nicotiana. Plant Physiol. 111: 885–891

    Google Scholar 

  • Ryan CA (1988) Oligosaccharides as recognition signals for the expression of defensive genes in plants. Biochemistry 27: 8879–8883

    Google Scholar 

  • Ryan CA & Farmer EE (1991) Oligosaccharide signals in plants: a current assessment. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 651–674

    Google Scholar 

  • Ryals J, Uknes S & Ward E. (1994). Systemic acquired-resistance. Plant Physiol. 104: 1109–1112

    Google Scholar 

  • Sakia H, Hua J, Chen QC, Chang C, Mednano LJ, Bleecker AB & Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 95: 5812–5817

    Google Scholar 

  • Sam CE & Conway WS (1987) Additive effects of controlled-atmosphere storage and calcium chloride on decay, firmness retention, and ethylene production in apples. Plant Dis. 71: 1003–1005

    Google Scholar 

  • Samborski DJ & Rohringer R (1970) Abnormal metabolites of wheat: Occurrence, isolation and biogenesis of 2-hydroxyputrescine amides. Phytochemistry 9: 1939–1945

    Google Scholar 

  • Sanders D, Brownlee C & Harper JF (1999) Communicating with calcium. Plant Cell 11: 691–706

    Google Scholar 

  • Saniewski M, Miszczak A, Kawa-Miszczak L, Wegrzynowicz-Lesiak E, Miyamoto K & Ueda J (1998) Effects of methyl jasmonate on anthocyanin accumulation, ethylene production, and CO2 evolution in uncooled and cooled tulip bulbs. J. Plant Growth Regul. 17: 33–37

    Google Scholar 

  • Sasaki Y, Asamizu E, Shibata D, Nakamura Y, Kaneko T, Awai K, Masuda T, Shimada H, Takamiya K, Tabata S & Ohta H (2000) Genome-wide expression-monitoring of jasmonate-responsive genes of Arabidopsis using cDNA arrays. Biochem. Soc. Trans. 28: 863–864

    Google Scholar 

  • Saunders MJ & Hepler PK (1983) Calcium antagonists and calmodulin inhibitors block cytokinin-induced bud formation in Funaria. Dev. Biol. 99: 41–49

    Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC & Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 97: 11655–11660

    Google Scholar 

  • Schmidt HH & Walter U (1994) NO at work. Cell 78: 919–925

    Google Scholar 

  • Schumacher HM, Gundlach H, Fielder F & Zenk MH (1987) Elicitation of benzophenanthridine alkaloid synthesis in Eschcholtzia cell cultures. Plant Cell Rep. 6: 410–413

    Google Scholar 

  • Schweizer P, Buchala A, Silverman P, Seskar M, Raskin I & Metraux J-P (1997) Jasmonate-inducible genes are activated in rice by pahthogen attack without a concomitant increase in endogenous jasmonic acid levels. Plant Physiol. 114: 79–88

    Google Scholar 

  • Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW & Staskawicz BJ (1996) Molecular basis of gene-for gene specificity in bacterial speck disease of tomato. Science 274: 2063–2065

    Google Scholar 

  • Seki M, Ohzora C, Takeda M & Furusaki S (1997) Taxol (paclitaxel) production using free and immobilized cells of Taxus cuspidate. Biotechnol. Bioeng. 53: 214–219

    Google Scholar 

  • Sembdner G & Parthier B (1993) The biochemistry and the physiological and molecular actions of jasmonates. Annu. Rev Plant Physiol. Plant Mol. Biol. 44: 569–589

    Google Scholar 

  • Seskar M, Shulaev V & Raskin I (1998) Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiol. 116: 387–392

    Google Scholar 

  • Shah J & Klessig DF (1999) Salicylic acid: Signal perception and transduction. In: Libbenga K, Hall M & Hooykaas PJJ (eds) Biochemistry and Molecular Biology of Plant Hormones (pp 513–541). Elsevier, Oxford

    Google Scholar 

  • Shah J, Tsui F & Klessig DF (1997) Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol. Plant-Microbe Interact. 10: 69–78

    Google Scholar 

  • Shah J, Kachroo P & Klessig DF (1999) The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent. Plant Cell. 11: 191–206

    Google Scholar 

  • Sharan M, Taguchi G, Gonda K, Jouke T, Shimosaka M, Hayashida N & Okazaki M (1998) Effects of methyl jasmonate and elicitor on the activation of phenylalanine ammonia lyase and the accumulation of scopoletin and scopolin in tobacco cell cultures. Plant Sci. 132: 13–19

    Google Scholar 

  • Shulaev V, Silverman P & Raskin I (1997) Airborne signaling by methyl salicylate in plant pathogen resistance. Nature 385: 718–721

    Google Scholar 

  • Sinclair (1969) Plant Soil 30: 423–438

    Google Scholar 

  • Singh G, Gavrieli J, Oakey JS & Curtis WR (1998) Interaction of methyl jasmonate, wounding and fungal elicitation during sesquiterpene induction in Hyoscyamus muticus root cultures. Plant Cell Rep. 17: 391–395

    Google Scholar 

  • Skriver K, Olsen FL, Rogers JC & Mundy J (1991) Cis-Acting DNA elements responsive to gibberellins and its antagonist abscisic acid. Proc. Natl. Acad. Sci. USA 88: 7266–7270

    Google Scholar 

  • Slocum RD & Weinstein LH (1990) Stress-induced polyamine accumulation as a mechanism of ammonia detoxification in oat leaves. In: Flores HE, Arteca RN & Shannon JC (eds) Polyamine and Ethylene: Biochemistry, Physiology and Interactions (pp 157–165). Am. Soc. Plant Physiol., Rockville, MD

    Google Scholar 

  • Slocum RD, Kaur-Sawhney R & Galston AW (1984) The physiology and biochemistry of polyamines in plants. Arch. Biochem. Biophys. 235: 283–303

    Google Scholar 

  • Smith C & Gallon J (2001) Signalling: no plant is an island. New Phytol. 150: 11–18.

    Google Scholar 

  • Smith CJ (1996) Accumulation of phytoalexins: defense mechanism and stimulus response system. New Phytol. 86: 132–145

    Google Scholar 

  • Smith TA (1973) Amine levels in mineral-deficient Hordeum vulgare leaves. Phytochemistry 12: 2093–2100

    Google Scholar 

  • Smith TA & Best GR (1977) Polyamines in barley seedlings. Phytochemistry 16: 841–843

    Google Scholar 

  • Smith TA & Best GR (1978) Distribution of the hordatines in barley. Phytochemistry 17: 1093–1098

    Google Scholar 

  • Smith TA & Sinclair C (1967) The effect of acid feeding on amine formation in barley. Ann. Bot. 31: 103–111

    Google Scholar 

  • Spanu P & Boller T (1989) Ethylene biosynthesis in tomato plants infected by Phytophthora infestans. J. Plant Physiol. 134: 533–537

    Google Scholar 

  • Spiro MD, Ridley BL, Eberhard S, Kates KA, Mathieu Y, O'Neill MA, Mohnen D, Guern J, Darvill A & Albersheim P (1998) Biological activity in tobacco tissue cultures of reducing end-derivatized oligogalacturonides. Plant Physiol. 116: 1289–1298

    Google Scholar 

  • Stab MR & Ebel J (1987) Effects of Ca++ on phytoalexin induction by fungal elicitor in soybean cells. Arch. Biochem. Biophys. 257: 416–423

    Google Scholar 

  • Stall RE & Hall CB (1984) Chlorosis and ethylene production in pepper leaves infected with Xanthomonas campestris pv vesicatoria. Phytopathology. 74: 373–375

    Google Scholar 

  • Stamler JS (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell. 78: 931–936

    Google Scholar 

  • Staswick PE, Yuen GY & Lehman CC (1998) Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J. 15: 747–754

    Google Scholar 

  • Stelmach BA, Muller A, Hennig P, Laudert D, Andert L & Weiler EW (1998) Quantification of the octadeconoid 12-oxo-phytodienoic acid, a signalling compound in plant mechano-transduction. Phytochemistry 47: 539–546

    Google Scholar 

  • Stockigt J, Oblitz P, Falkenhagen H, Lutterbach R & EndeßS (1995) Natural products and enzymes from plant cell cultures. Plant Cell Tiss. Org Cult. 43: 97–109

    Google Scholar 

  • Stoesll A (1967) The antifungal factors in barley. IV Isolation, structure and synthesis of hordatines. Can J. Chem. 45: 1745–1760

    Google Scholar 

  • Stoesll A & Unwin CH (1970) The antifungal factors in barley. V. Antifungal activity of the hordatines. Can. J. Bot. 48: 465–470

    Google Scholar 

  • Strickland FM, Darvill A, Albersheim P, Eberhard S, Pauly M & Pelley RP (1999) Inhibition of UV-induced immune suppression and interleukin-10 production by plant oligosaccharides and polysaccharides. Photochem. Photobiol. 69: 141–147

    Google Scholar 

  • Stroinski A & Szczotka Z (1989) Effect of cadmium and Phytophthora infestans on polyamine levels in potato leaves. Physiol. Plant. 77: 244–246

    Google Scholar 

  • Stroinski A, Floryszak-Wieczorek J & Wozny A (1989) Effects of cadmium on the host-pathogen system. I. Alterations of potato leaves and Phytophthora infestans relations. Biochem. Physiol. Pflanz. 186: 43–54

    Google Scholar 

  • Sudhakar Johnson T, Ravishankar GA & Venkataraman LV (1991) Elicitation of capsaicin production in freely suspended cells and immobilized cell cultures of Capsicum frutescens Mill. Food Biotech. 5: 197–205

    Google Scholar 

  • Suresh MR, Ramakrishna S & Adiga PR (1978) Regulation of arginine decarboxylase and putrescine levels in Cucumis sativus cotyledons. Phytochemistry 20: 1477–1488

    Google Scholar 

  • Suvarnalatha G, Chand N, Ravishankar GA & Venkataraman LV (1993) Computer-aided modeling and optimization for capsaicinoid production by immobilized Capsicum frutescens cells. Enz. Microb. Technol. 15: 710–715

    Google Scholar 

  • Tadolini B, Cabrini L, Piccinini G, Davalli PP & Sechi AM (1985) Determination of the polyamine content of rat heart mitochondria by the use of heparin-sepharose.Appl. Biochem. Biotechnol. 11: 173–176

    Google Scholar 

  • Takahashi K, Isobe M & Muto S (1997) An increase in cytosolic calcium ion concentration precedes hypoosmotic shock-induced activation of protein kinases in tobacco suspension culture cells. FEBS Lett. 401: 202–206

    Google Scholar 

  • Takahashi T & Yoshida D (1960) Relationship between the accumulation of putrescine and the nutrition of tobacco plant. J. Soil Sci. Manure Jpn. 31: 39–41

    Google Scholar 

  • Takeda Y, Samejina K, Nagano K, Watanabe M, Sugeta H & Kyogoku Y (1983) Determination of protonation sites in thermospermine and in other polyamines by 15N and 13C nuclear magnetic resonance spectroscopy.Eur. J. Biochem. 130: 383–396

    Google Scholar 

  • Tamari G, Borochov A, Alzorn R & Weiss D (1995) Methyl jasmonate induces pigmentation and flavonoid gene expression in petunia corollas: a possible role in wound response. Physiol. Plant. 94: 45–50

    Google Scholar 

  • Tamogami S, Rakwal R & Kodama O (1997) Phytoalexin production by amino acid conjugates of jasmonic acid through induction of naringenin-7-o-methyl transferase, a key enzyme on phytoalexin biosynthesis in rice (Oryza sativa L.). FEBS Lett. 401: 239–242

    Google Scholar 

  • Tang M & Smith CJ (2001) Elicitor induced defense responses in Medicago sativa. New Phytol. 149: 401–418

    Google Scholar 

  • Tang X, Frederick, RD, Zhang J, Halterman DA, Jia Y & Martin GB (1996) Initiation of plant disease resistance by physical interaction of AvrPto and Pto Kinase. Science 2060–2062

  • Taraporewala ZF & Culver JN (1996) Identification of an elicitor active site within the three-dimensional structure of the tobacco mosaic virus coat protein. Plant Cell 8: 169–178

    Google Scholar 

  • Tavernier W, Wendehenne D, Belin JP & Pugin A (1995) Involvement of calcium in the action of cryptogein, a proteinaceous elicitor of the hypersensitive reaction in tobacco cells. Plant Physiol. 109: 1025–1031

    Google Scholar 

  • Tenhaken R, Levine A, Brisson LF, Dixon RA & Lamb C (1995) Function of the oxidative burst in hypersensitive disease resistance. Proc. Natl. Acad. Sci. USA 92: 4158–4263

    Google Scholar 

  • Thaler JS (1999) Jasmonate-inducible plant defenses cause increased parasitism of herbivores. Nature 399: 686–688

    Google Scholar 

  • Thilmony RL, Chen Z, Bressan RA & Martin GB (1995) Expression of the tomato Pto gene in tobacco enhances resistance to Pseudomonas syringae pv. tabaci expressing avrPto. Plant Cell 7: 1529–1536

    Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-mani B, Vogelsang R, Cammue BPA & Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95: 15107–15111

    Google Scholar 

  • Tiburcio AF, Besford RT, Borrell A & Mace M (1995) Metabolism and function of polyamines during osmotically induced senescence in oat leaves and protoplasts. In: Wallsgrove RM (ed) Amino Acids and their Derivatives in Higher Plants (pp 205–225). Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Tietjen KG & Matern U (1983).Differential response of cultured Parsley cells to elicitors from two non-pathogenic strains of fungi. 2. Effects on enzyme activities. Eur. J Biochem. 131: 409–413

    Google Scholar 

  • Treutter D (2000) Induced resistance in plant pathology-consequences for the quality of plant foodstuffs? J Appl. Bot. 74: 1–4

    Google Scholar 

  • Trewavas AJ & Malho R (1997) Signal perception and transduction: the origin of the phenotype. Plant Cell 9: 1181–1195

    Google Scholar 

  • Tscharntke T, Thiessen S, Dolch R & Boland W (2001) Herb-ivory, induced resistance, and interplant signal transfer in Alnus glutinosa. Biochem. Syst. Ecol. 29: 1025–1047

    Google Scholar 

  • Umemoto N, Kakitani M, Iwamatsu A, Yoshikawa M, Yamaoka N & Ishida I (1997) The structure and function of a soybean ß -glucan-elicitor-binding protein. Proc. Natl. Acad. Sci. USA 94: 1029–1034

    Google Scholar 

  • Van Camp W, Van Montagu M & Inze D (1998) H2O2 and NO: redox signals in disease resistance. Trends Plant Sci. 3: 330–334

    Google Scholar 

  • Van Cutsem P & Messiaen J (1994) Biological effects of pectic fragments in plant cells. Acta Bot Neerl. 43: 231–245

    Google Scholar 

  • Van Wees SCM, Luijendijk M, Smoorenburg I, Van Loon LC & Pieterse CMJ (1999) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol Biol. 41: 537–549

    Google Scholar 

  • Vanek T, Valtherova I, Pospisilova R & Vaisar T (1994) The effect of immobilization on the course of biotransformation by plant cells. Biotech. Lett. 8: 289–294

    Google Scholar 

  • Verhey SD & Lomax TL (1993) Signal transduction in vascular plants. J. Plant Growth Regul. 12: 179–195

    Google Scholar 

  • Verpoorte R, van der Heijden R, ten Hoopen HJG & Memelink J (1999) Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotech. Lett. 21: 467–479

    Google Scholar 

  • Vick BA & Zimmermann DC (1983) The biosynthesis of jasmonic acid: a physiological role for plant lipoxygenase. Biochem. Biophys. Res. Commun. 111: 470–477

    Google Scholar 

  • Vijayan P, Shockey J, Levesque CA, Cook RJ & Browse J (1998) A role for jasmonate in pathogen defense of Arabidopsis.Proc. Natl. Acad. Sci. USA 95: 7209–7214

    Google Scholar 

  • Villalba Mateos F, Rickauer M & Esquerré-Tugayé MT (1997) Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var. nicotianae that shows cellulose-binding and lectin-like activities. Mol. Plant-Microbe Interact. 10: 1045–1053

    Google Scholar 

  • Walker-Simmons M, Jin D, West CA, Hadwiger L & Ryan CA (1984) Comparison of proteinase inhibitor-inducing activities and phytoalexin elicitor activities of a pure fungal endopoly-galacturonase, pectic fragments and chitosans. Plant Physiol. 76: 833–836

    Google Scholar 

  • Walters DR & Robins DJ (1994) Control of fungal plant disease using putrescine analogs. Biochem. Soc. Trans. 22: 390S

    Google Scholar 

  • Walters DR & Shuttleton AA (1985) Polyamines in roots of turnip infected with Plasmodiophora brassica Wor. New Phytol. 100: 209–214

    Google Scholar 

  • Walters DR, Wilson PEF & Shuttleton AA (1985) Relative changes in levels of polyamines and activities of their biosynthetic enzymes in barley infected with the powdery mildew fungus, Erysiphe graminis D.C.ex Merat f.sp.hordei Marchal. New Phytol. 101: 695–705

    Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl GP, Metraux J-P & Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3: 1085–1094

    Google Scholar 

  • Wayne R & Hepler PK (1985) Red light stimulates an increase in intracellular calcium in the spores of Onoclea sensibilis.Plant Physiol. 77: 8–11

    Google Scholar 

  • West CA, Bruce RJ & Jin DF (1984) Pectic fragments of plant cell walls as mediators of stress responses. In: Dugger WM & Bartnicki GS (eds) Structure, Function and Biosynthesis of Plant Cell Walls, Proc. 7th Annu. Symp. Bot. Am. Soc. Plant Physiol. (pp 359–379). Rockville, MD

  • Whipps JM, Wandter KH, McGee EEM & Lewis DH (1982) Use of biochemical markers to determine growth, development and biomass of fungi in infected tissues, with particular reference to antagonistic and mutualistic biotrophs. Trans. Br. Mycol. Soc. 79: 785–800

    Google Scholar 

  • White RF (1979) Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99: 410–412

    Google Scholar 

  • White PJ (1998) Calcium channels in the plasma membrane of root cells. Ann. Bot. 81: 173–183

    Google Scholar 

  • Whitham P, McCormick S & Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc. Natl. Acad. Sci. USA 93: 8776–8781

    Google Scholar 

  • Wink M(1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor. Appl. Genet. 75: p225–233

  • Wojtaszek P, Trethowan JB & Bolwell GP (1997) Reconstitution in vitro of the components and conditions required for the oxidative cross-linking of extracellular proteins in French bean (Phaseolus vulgaris L.). FEBS Lett. 405: 95–98

    Google Scholar 

  • Xie Z & Chen Z (1999) Salicylic acid induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells. Plant Physiol. 120: 217–225

    Google Scholar 

  • Xu Y, Chang P-FL, Liu D, Narasimhan ML, Raghothama KG, Hasegawa PM & Berssan RA (1994) Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6: 1077–1085

    Google Scholar 

  • Yakugaku Z (1993) Elicitor-induced production of secondary metabolites in higher plants. Nishi A 113: 847–860

    Google Scholar 

  • Yang T, Segal G, Abbo S, Feldman M & Fromm H (1996) Characterisation of the calmodulin gene family in wheat. Mol. Gen. Genet. 252: 694–694

    Google Scholar 

  • Yang Y, Shah J & Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev. 11: 1621–1639

    Google Scholar 

  • Yoshida D (1969) Formation of putrescine from ornithine and arginine in tobacco plants. Plant Cell Physiol. 10: 393–397

    Google Scholar 

  • Young ND & Galston AW (1983) Are polyamines transported in etiolated peas? Plant Physiol. 73: 912–914

    Google Scholar 

  • Yu I-C, Parker J & Bent AF (1998) Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc. Natl. Acad. Sci. USA 95: 7819–7924

    Google Scholar 

  • Yukimune Y, Tabata H, Higashi Y & Hara Y (1996) Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat. Biotechnol. 14: 1129–1132

    Google Scholar 

  • Zabetakis I, Edwards R & O'Hagan D (1999) Elicitation of tropane alkaloid biosynthesis in transformed root cultures of Datura stramonium. Pytochemistry 50: 53–56

    Google Scholar 

  • Zenk MH (1991) Chasing the enzymes of secondary metabolism: plant cell cultures as a pot of gold. Phytochemistry 30: 3861–3863

    Google Scholar 

  • Zhang Y, Fan W, Kinkelma M, Li X & Dong X (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc. Natl. Acad. Sci. USA 96: 6523–6528

    Google Scholar 

  • Zimmermann S, Nurnberger T, Frachisse J-M, Wirtz W, Guern J, Hedrich R & Scheel D (1997) Receptor-mediated activation of a Ca2+permeable ion channel in pathogen defense. Proc. Natl. Acad. Sci. USA 94: 2751–2755

    Google Scholar 

  • Zook MN, Rush JS & Kuc JA (1987) A role for calcium in the elicitation of rishitin and lubimin accumulation in potato tuber tissue. Plant Physiol. 84: 520–525

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudha, G., Ravishankar, G. Involvement and interaction of various signaling compounds on the plant metabolic events during defense response, resistance to stress factors, formation of secondary metabolites and their molecular aspects. Plant Cell, Tissue and Organ Culture 71, 181–212 (2002). https://doi.org/10.1023/A:1020336626361

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020336626361

Navigation