Skip to main content
Log in

The Nature of Information in Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A suitable unified statistical formulation of quantum and classical mechanics in a *-algebraic setting leads us to conclude that information itself is noncommutative in quantum mechanics. Specifically we refer here to an observer's information regarding a physical system. This is seen as the main difference from classical mechanics, where an observer's information regarding a physical system obeys classical probability theory. Quantum mechanics is then viewed purely as a mathematical framework for the probabilistic description of noncommutative information, with the projection postulate being a noncommutative generalization of conditional probability. This view clarifies many problems surrounding the interpretation of quantum mechanics, particularly problems relating to the measuring process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Heisenberg, The Physical Principles of the Quantum Theory (University of Chicago Press, Chicago, 1930).

    Google Scholar 

  2. J. Bub, “Von Neumann's projection postulate as a probability conditionalization rule in quantum mechanics,” J. Phil. Logic 6, 381–390 (1977).

    Google Scholar 

  3. C. A. Fuchs, “Quantum foundations in the light of quantum information,” in Proceedings of the NATO Advanced Research Workshop on Decoherence and Its Implications in Quantum Computation and Information Transfer, A. Gonis, ed. (Plenum, New York, 2001); quant-ph/0106166, quant-ph/0205039.

    Google Scholar 

  4. C. M. Caves, C. A. Fuchs, and R. Schack, “Quantum probabilities as Bayesian probabilities,” Phys. Rev. A 65, 022305 (2002).

    Google Scholar 

  5. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 1, 2nd edn. (Springer, New York, 1987).

    Google Scholar 

  6. G. J. Murphy, C*-Algebras and Operator Theory (Academic, San Diego, 1990).

    Google Scholar 

  7. W. Rudin, Real and Complex Analysis, 3rd edn. (McGraw-Hill, New York, 1987).

    Google Scholar 

  8. B. O. Koopman, “Hamiltonian systems and transformations in Hilbert space,” Proc. Natl. Acad. Sci. U.S.A. 17, 315–318 (1931).

    Google Scholar 

  9. M. Born, Physics in My Generation (Pergamon, London, 1956).

    Google Scholar 

  10. D. Petz, “Conditional expectation in quantum probability,” in Quantum Probability and Applications III, L. Accardi and W. von Waldenfels, eds. (Springer, Berlin, 1988), pp. 251–260.

    Google Scholar 

  11. R. Duvenhage, “Recurrence in quantum mechanics,” Int. J. Theor. Phys. 41, 45–61 (2002).

    Google Scholar 

  12. C. A. Fuchs and A. Peres, “Quantum theory needs no ‘interpretation’,” Phys. Today 53(3), 70–71 (2000).

    Google Scholar 

  13. S. Straătilaă and L. Zsido´, Lectures on von Neumann algebras (Editura Academiei, Bucures¸ti and Abacus Press, Tunbridge Wells, 1979).

    Google Scholar 

  14. R. Haag, Local Quantum Physics: Fields, Particles, Algebras, 2nd edn. (Springer, Berlin, 1996).

    Google Scholar 

  15. J. Schwinger, Quantum Mechanics: Symbolism of Atomic Measurements (Springer, Berlin, 2001).

    Google Scholar 

  16. J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932); English transl. Mathematical Foundations of Quantum Mechanics by R. T. Beyer (Princeton University Press, Princeton, New Jersey, 1955).

    Google Scholar 

  17. T. Sudbery, “Continuous state reduction,” in Quantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Oxford University Press, Oxford, 1986), pp. 65–83.

    Google Scholar 

  18. A. S. Holevo, “Limit theorems for repeated measurements and continuous measurement processes,” in Quantum Probability and Applications IV, L. Accardi and W. von Waldenfels, eds. (Springer, Berlin, 1989), pp. 229–255.

    Google Scholar 

  19. B. Misra and E. C. G. Sudarshan, “The Zeno's paradox in quantum theory,” J. Math. Phys. 18, 756–763 (1977).

    Google Scholar 

  20. C. Cohen-Tannoudji, B. Diu, and F. Laloe¨, Quantum mechanics, Volume I (Hermann, Paris, and Wiley, New York, 1977).

    Google Scholar 

  21. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777–780 (1935).

    Google Scholar 

  22. C. J. Isham, Lectures on Quantum Theory: Mathematical and Structural Foundations (Imperial College Press, London, 1995).

    Google Scholar 

  23. D. Finkelstein, “Space-time code,” Phys. Rev. 184, 1261–1271 (1969).

    Google Scholar 

  24. S. Doplicher, K. Fredenhagen, and J. E. Roberts, “The quantum structure of spacetime at the Planck scale and quantum fields,” Commun. Math. Phys. 172, 187–220 (1995).

    Google Scholar 

  25. J. Marsden, Application of Global Analysis in Mathematical Physics (Carleton Mathematical Lecture Notes, No. 3, 1973).

  26. D. R. Finkelstein, Quantum Relativity: A Synthesis of the Ideas of Einstein and Heisenberg (Springer, Berlin, 1996).

    Google Scholar 

  27. R. F. Streater, “Classical and quantum probability,” J. Math. Phys. 41, 3556–3603 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duvenhage, R. The Nature of Information in Quantum Mechanics. Foundations of Physics 32, 1399–1417 (2002). https://doi.org/10.1023/A:1020359806696

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020359806696

Navigation