Skip to main content
Log in

Measurement and Mapping of pH in Hydrating Pharmaceutical Pellets Using Confocal Laser Scanning Microscopy

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. pH modifiers are often used to promote drug solubility/stability in dosage forms, but predicting the extent and duration of internal pH modification is difficult. Here, a noninvasive technique is developed for the spatial and temporal mapping of pH in a hydrated pharmaceutical pellet, within a pH range appropriate for microenvironmental pH control by weak acids.

Methods. Confocal dual excitation imaging (Ex 488/Ex 568) of pellets containing a single, soluble, pH-sensitive fluorophore with cross-validation from a pH microelectrode. The technique was used to investigate the changing pH distribution in hydrating pellets containing two weak acids of differing solubility.

Results. The algorithm developed provided pH measurements over the range pH 3.5-5.5 with a typical accuracy of 0.1 pH units and with excellent correlation with pH microelectrode measurements. The method showed how pellets containing 25%w/w tartaric acid exhibited a rapid but transient fall in internal pH, in contrast to a slower more prolonged reduction with fumaric acid.

Conclusions. Spatial and temporal monitoring of pH in pellets was achieved with good accuracy within a pH range appropriate to pH modification by weak acids. However, the method developed is also generic and with suitable fluorophores will be applicable to other pH ranges and other dosage forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Thoma and T. Zimmer. Retardation of weakly basic drugs with diffusion tablets. Int.J.Pharm. 58:197-202 (1990).

    Google Scholar 

  2. K. Thoma and I. Ziegler. The pH-independent release of fenoldopam from pellets with insoluble film coats. Eur.J.Pharm.Biopharm. 46:105-113 (1998).

    Google Scholar 

  3. R. Bianchini, G.Bruni, A.Gazzaniga, and C.Vecchio. Influence of extrusion-spheronisation processing on the physical properties of d-indobufen pellets containing pH adjusters. Drug Dev.Ind.Pharm. 18:1485-1503 (1992).

    Google Scholar 

  4. M. Kohri, N. Miyata, M. Takahashi, and H. Endo, K. Iseki, K. Miyazaki, S. Takechi, A. Nomura. Evaluation of pH-independent sustained release granules of dipyridamole by using gastric acidity controlled rabbits and human subjects. Int.J.Pharm. 81:49-58 (1992).

    Google Scholar 

  5. G. M. Venkatesh. Development of controlled release SK & F 82526 J buffer bead formulations with tartaric acid as the pbuffer. Pharm.Dev.Tech. 34:477-485 (1998).

    Google Scholar 

  6. C. Van Der Veen, H. Buitendijk, and C. F. Lerk. The effect of acidic excipients on the release of weakly basic drugs from the programmed release megaloporous system. Eur.J.Pharm.Biopharm. 37:238-242 (1991).

    Google Scholar 

  7. K. E. Gabr. Effect of organic acids on the release patterns of weakly basic drugs from inert sustained release matrix tablets. Eur.J.Pharm.Biopharm. 38:199-202 (1992).

    Google Scholar 

  8. N. Kohri, H.Yatabe, K. Iseki, and K. Miyazaki. A new type of pH-independent controlled release tablet. Int.J.Pharm. 68:255-264 (1991).

    Google Scholar 

  9. C. Doherty and P. York. Microenvironmental pH control of drug dissolution. Int.J.Pharm. 50:223-232 (1989).

    Google Scholar 

  10. C. Kroll, K. Mader, R. Stober, and H. H. Borchert. Direct and continuous determination of pH values in nontransparent w/o systems by means of EPR spectroscopy. Eur.J.Pharm.Sci. 3:21-26 (1995).

    Google Scholar 

  11. K. Mader, S. Nitschke, R. Stosser, H. H. Borchert, and A. Domb. Nondestructive and localised assessment of acidic microenvironments inside biodegradable polyanhydrides by spectral spatial Electron Paramagnetic Resonance Imaging (EPRI). Polymer. 38: 4785-4794 (1997).

    Google Scholar 

  12. L. S. Cutts, S. Hibberd, J. Adler, M. C. Davies, and C. D. Melia. Characterising drug release processes with controlled release dosage forms using the confocal laser scanning microscope. J.Control.Release 42:115-124 (1996).

    Google Scholar 

  13. A. Shenderova, T. G. Burke, and S. P. Schwendeman. The acidic microclimate in poly(lactide-co-glycolide) microspheres stabilises Camptothecins. Pharm.Res. 16:241-248 (1999).

    Google Scholar 

  14. K. Fu, D. W. Pack, A. M. Kilbanov, and R. Langer. Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid)(PLGA) microspheres. Pharm.Res. 17:100-106 (2000).

    Google Scholar 

  15. R. Sanders, A. Draaijer, H. C. Gerritsen, P. M. Houpt, and Y. K. Levine. Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy. Anal.Biochem. 227:302-308 (1995).

    Google Scholar 

  16. K. W. Dunn, S. Mayor, J. N. Myers, and F. R. Maxfield. Applications of ratio fluorescence microscopy in the study of cell physiology. FASEB J. 8:573-582 (1994).

    Google Scholar 

  17. J. E. Whitaker, R. P. Haougland, and F. G. Prendergast. Spectral and photophysical studies of benzo[c]xanthene dyes: Dual emission pH sensors. Anal.Biochem. 194:330-344 (1991).

    Google Scholar 

  18. P. N. Dubbin, S. H. Cody, and D. A. Williams. Intracellular pH mapping with SNARF-1 and confocal microscopy. II: pH gradients within single cultured cells. Micron. 24:581-586 (1993).

    Google Scholar 

  19. S. Bassnett, L. Reinisch, and D. C. Beebe. Intracellular pH measurement using single excitation-dual emission fluorescence ratios. Am.J.Physiol. 258:171-178 (1990).

    Google Scholar 

  20. K. J. Buckler and R. D. Vaughan-Jones. Application of a new pH sensitive fluorophore (carboxy-SNARF-1) for intracellular pH measurement in small, isolated cells. Eur.J.Physiol. 417:234-239 (1990).

    Google Scholar 

  21. J. A. Thomas, R. N. Buchsbaum, A. Zimniak, and E. Racker. Intracellular pH measurements in Ehrlich ascites tumour cells utilising spectroscopic probes generated in situ. Biochem. 18: 2210-2218 (1979).

    Google Scholar 

  22. Y. Zhou, E. M. Marcus, R. P. Haugland, and M. Opas. Use of a new fluorescent probe, seminaphthofluorescein-calcein, for determination of intracellular pH by simultaneous dual-emission imaging laser scanning confocal microscopy. J.Cell Physiol. 164: 9-16 (1995).

    Google Scholar 

  23. J. Lui, Z. Diwu, and D. H. Klaubert. Fluorescent molecular probes III. 2', 7'-Bis-(3-carboxypropyl)-5-(and-6)-carboxyfluorescein (BCPCF): a new polar dual excitation and dual emission pH indicator with a pKa of 7.0. Bioorg.Mel.Chem.Lett. 7:3069-3072 (1997).

    Google Scholar 

  24. S. Mordon, J. M. Devoisselle, and S. Soulie. Fluorescence spectroscopy of pH in vivo using dual-emission fluorophore (C-SNAFL-1). J.Phytochem.Photobiol.B: Biol. 28:19-23 (1995).

    Google Scholar 

  25. L. S. Cutts, P. A. Roberts, J. Adler, M. C. Davies, and C. D. Melia. Determination of localised diffusion coefficients in gels using confocal scanning laser microscopy. J.Microscopy 180:131-139 (1995).

    Google Scholar 

  26. C. D. Melia, A. R. Rajabi-Siahboomi, A. R. and R. W. Bowtell. Magnetic resonance imaging of controlled release pharmaceutical dosage forms. Pharm.Sci.Tech.Today 1:32-39 (1999).

    Google Scholar 

  27. J. Adler, A. Jayan, and C. D. Melia. Quantifying differential expansion within hydrating hydrophilic matrices by tracking embedded fluorescent microspheres. J.Pharm.Sci. 88:371-377 (1999).

    Google Scholar 

  28. United States Pharmacopoeia 24. United States Pharmacopeial convention. 1999.

  29. S. Budavari. Ed. The Merck Index. Twelfth Edition. Merck & Co Inc, New York, 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin D. Melia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cope, S.J., Hibberd, S., Whetstone, J. et al. Measurement and Mapping of pH in Hydrating Pharmaceutical Pellets Using Confocal Laser Scanning Microscopy. Pharm Res 19, 1554–1563 (2002). https://doi.org/10.1023/A:1020425220441

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020425220441

Navigation