Skip to main content
Log in

Integration of genomic datasets to predict protein complexes in yeast

  • Published:
Journal of Structural and Functional Genomics

Abstract

The ultimate goal of functional genomics is to define the function of all the genes in the genome of an organism. A large body of information of the biological roles of genes has been accumulated and aggregated in the past decades of research, both from traditional experiments detailing the role of individual genes and proteins, and from newer experimental strategies that aim to characterize gene function on a genomic scale.

It is clear that the goal of functional genomics can only be achieved by integrating information and data sources from the variety of these different experiments. Integration of different data is thus an important challenge for bioinformatics.

The integration of different data sources often helps to uncover non-obvious relationships between genes, but there are also two further benefits. First, it is likely that whenever information from multiple independent sources agrees, it should be more valid and reliable. Secondly, by looking at the union of multiple sources, one can cover larger parts of the genome. This is obvious for integrating results from multiple single gene or protein experiments, but also necessary for many of the results from genome-wide experiments since they are often confined to certain (although sizable) subsets of the genome.

In this paper, we explore an example of such a data integration procedure. We focus on the prediction of membership in protein complexes for individual genes. For this, we recruit six different data sources that include expression profiles, interaction data, essentiality and localization information. Each of these data sources individually contains some weakly predictive information with respect to protein complexes, but we show how this prediction can be improved by combining all of them. Supplementary information is available at http://bioinfo.mbb.yale.edu/integrate/interactions/.Abbreviations: TP: true possitive; TN: true negative; FP: false positive; FN: false negative; Y2H: yeast two-hybrid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ermolaeva, O., Rastogi, M., Pruitt, K.D., Schuler, G.D., Bittner, M.L., Chen, Y., Simon, R., Meltzer, P., Trent, J.M., and Boguski, M.S. (1998) Nat. Genet. 20: 19-23.

    Google Scholar 

  2. Gaasterland, T., and Bekiranov, S. (2000) Nat. Genet. 24: 204-206.

    Google Scholar 

  3. Hegde, P., Qi, R., Abernathy, K., Gay, C., Dharap, S., Gaspard, R., Hughes, J.E., Snesrud, E., Lee, N., and Quackenbush, J. (2000) Biotechniques. 29: 548-550.

    Google Scholar 

  4. Kim, S., Dougherty, E.R., Bittner, M.L., Chen, Y., Sivakumar, K., Meltzer, P., and Trent, J.M. (2000) J. Biomed. Opt. 5: 411-424.

    Google Scholar 

  5. Shalon, D., Smith, S.J., and Brown, P.O. (1996) Genome Res. 6: 639-645.

    Google Scholar 

  6. Ross-Macdonald, P., Coelho, P., Roemer, T., Agarwal, S., Kumar, A., Jansen, R., Cheung, K., Sheehan, A., Symoniatis, D., Umansky, L., Heidtman, M., Nelson, F., Iwasaki, H., Hager, K., Gerstein, M., Miller, P., Roeder, G., and Snyder, M. (1999) Nature. 402: 413-418.

    Google Scholar 

  7. Winzeler, E.A., Shoemaker, D.D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J.D., Bussey, H., Chu, A.M., Connelly, C., Davis, K., Dietrich, F., Dow, S.W., El Bakkoury, M., Foury, F., Friend, S.H., Gentalen, E., Giaever, G., Hegemann, J.H., Jones, T., Laub, M., Liao, H., Davis, R.W., and et al. (1999) Science 285: 901-906.

    Google Scholar 

  8. Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R.A., Gerstein, M. and Snyder, M. (2001) Science 293: 2101-2105.

    Google Scholar 

  9. Zhu, H., Klemic, J.F., Chang, S., Bertone, P., Casamayor, A., Klemic, K.G., Smith, D., Gerstein, M., Reed, M.A., and Snyder, M. (2000) Nat Genet. 26: 283-289.

    Google Scholar 

  10. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001) Pr. Natl. Acad. Sci. USA 98: 4569-4574.

    Google Scholar 

  11. Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S., and Rothberg, J.M. (2000) Nature 403: 623-627.

    Google Scholar 

  12. Ben-Dor, A., Shamir, R. and Yakhini, Z. (1999) J. Comput. Biol. 6: 281-297.

    Google Scholar 

  13. Brown, M.P., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C.W., Furey, T.S., Ares, M., Jr., and Haussler, D. (2000) Proc. Natl. Acad. Sci. USA 97: 262-267.

    Google Scholar 

  14. Bussemaker, H.J., Li, H. and Siggia, E.D. (2001) Nat. Genet. 27: 167-171.

    Google Scholar 

  15. Ge, H., Liu, Z., Church, G.M., and Vidal, M. (2001) Nat. Genet. 29: 482-486.

    Google Scholar 

  16. Gerstein, M., and Jansen, R. (2000) Curr. Opin. Struct. Biol. 10: 574-584.

    Google Scholar 

  17. Greenbaum, D., Jansen, R., and Gerstein, M. (2002) Bioinformatics 18: 1-12.

    Google Scholar 

  18. Greenbaum, D., Luscombe, N.M., Jansen, R., Qian, J., and Gerstein, M. (2001) Genome Res. 11: 1463-1468.

    Google Scholar 

  19. Gygi, S.P., Rochon, Y., Franza, B.R., and Aebersold, R. (1999) Mol. Cell. Biol. 19: 1720-1730.

    Google Scholar 

  20. Heyer, L.J., Kruglyak, S., and Yooseph, S. (1999) Genome Res. 9: 1106-1115.

    Google Scholar 

  21. Jansen, R., and Gerstein, M. (2000) Nucleic Acids Res. 28: 1481-1488.

    Google Scholar 

  22. Jansen, R., Greenbaum, D., and Gerstein, M. (2002) Genome Res. 12: 37-46.

    Google Scholar 

  23. Qian, J., Dolled-Filhart, M., J., L., Yu, H., and Gerstein, M. (2001a) J. Mol. Biol. 314: 1053-1066.

    Google Scholar 

  24. Qian, J., Stenger, B., Wilson, C.A., Lin, J., Jansen, R., Teichmann, S.A., Park, J., Krebs, W.G., Yu, H., Alexandrov, V., Echols, N., and Gerstein, M. (2001b) Nucleic Acids Res. 29: 1750-1764.

    Google Scholar 

  25. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.S., and Golub, T.R. (1999) Proc. Natl. Acad. Sci. USA 96: 2907-2912.

    Google Scholar 

  26. Toronen, P., Kolehmainen, M., Wong, G., and Castren, E. (1999) FEBS Lett. 451: 142-146.

    Google Scholar 

  27. Marcotte, E.M., Pellegrini, M., Thompson, M.J., Yeates, T.O., and Eisenberg, D. (1999) Nature 402: 83-86.

    Google Scholar 

  28. Drawid, A., and Gerstein, M. (2000) J. Mol. Biol. 301: 1059-1075.

    Google Scholar 

  29. Drawid, A., Jansen, R., and Gerstein, M. (2000) Trends Genet. 16: 426-430.

    Google Scholar 

  30. Cohen, B., Mitra, R., Hughes, J. and Church, G. (2000) Nat. Genet. 26: 183-186.

    Google Scholar 

  31. Mewes, H.W., Frishman, D., Gruber, C., Geier, B., Haase, D., Kaps, A., Lemcke, K., Mannhaupt, G., Pfeiffer, F., Schuller, C., Stocker, S., and Weil, B. (2000) Nucleic Acids Res. 28: 37-40.

    Google Scholar 

  32. Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., and Davis, R.W. (1998) Mol. Cell. 2: 65-73.

    Google Scholar 

  33. Hughes, T.R., Marton, M.J., Jones, A.R., Roberts, C.J., Stoughton, R., Armour, C.D., Bennett, H.A., Coffey, E., Dai, H.Y., He, Y.D.D., Kidd, M.J., King, A.M., Meyer, M.R., Slade, D., Lum, P.Y., Stepaniants, S.B., Shoemaker, D.D., Gachotte, D., Chakraburtty, K., Simon, J., Bard, M., and Friend, S.H. (2000) Cell 102: 109-126.

    Google Scholar 

  34. Bairoch, A., and Apweiler, R. (2000) Nucleic Acids Res. 28: 45-48.

    Google Scholar 

  35. Hodges, P.E., McKee, A.H., Davis, B.P., Payne, W.E., and Garrels, J.I. (1999) Nucleic Acids Res. 27: 69-73.

    Google Scholar 

  36. Gerstein, M., Lan, N., and Jansen, R. (2002) Science 295: 284-287.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, R., Lan, N., Qian, J. et al. Integration of genomic datasets to predict protein complexes in yeast. J Struct Func Genom 2, 71–81 (2002). https://doi.org/10.1023/A:1020495201615

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020495201615

Keywords

Navigation