Skip to main content
Log in

Hydroxyapatite and Hydroxyapatite-Based Ceramics

  • Published:
Inorganic Materials Aims and scope

Abstract

Data are summarized on the synthesis of hydroxyapatite (HA) by wet-chemical processes, solid-state reactions, and hydrothermal treatment. The conditions for HA preparation via precipitation from solutions of calcium chloride, dibasic ammonium phosphate, and aqueous ammonia are discussed at length. Detailed analysis of the fabrication and properties of calcium-phosphate-based ceramics is presented. The techniques for producing dense and porous HA ceramics are considered. The fabrication and medical applications of HA granules are discussed. Data are presented on HA-based composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aoki, H., Science and Medical Applications of Hydroxyapatite, Tokyo: JAAS, 1991.

    Google Scholar 

  2. Williams, D.F., Science and Applications of Biomaterials, Adv. Mater. Technol. Monitor., 1994, no. 2, pp. 1–38.

    Google Scholar 

  3. Orlovskii, V.P., Sukhanova, G.E., Ezhova, Zh.A., and Rodicheva, G.V., Hydroxyapatite Bioceramics, Zh.Vses. Khim. O–va. im. D.I. Mendeleeva, 1991, vol. 36, no. 6, pp. 683–688.

    Google Scholar 

  4. Hench, L.L., Bioceramics and the Future, Ceramics and Society, Vincenzini, P., Ed., Faenza: Techna, 1995, pp. 101–120.

    Google Scholar 

  5. Tret'yakov, Yu.D. and Brylev, O.A., New Generation of Inorganic Functional Materials, Ross. Khim. Zh., 2000, vol. 7, no. 4, pp. 10–16.

    Google Scholar 

  6. Doremus, R.H., Review Bioceramics, J. Mater. Sci., 1992, vol. 27, no. 3, pp. 285–296.

    Google Scholar 

  7. Cao, W. and Hench, L.L., Bioactive Materials, J. Ceram. Int., 1996, vol. 22, no. 6, pp. 493–507.

    Google Scholar 

  8. Sarkisov, P.D., Mikhailenko, N.Yu., Batrak, I.K., et al., Calcium Phosphate Glass-Ceramic Coatings for Titanium Implants, in Problemy implantologii v otorinolaringologii (Implants in Otorhinolaryngology), Moscow: Press-Solo, 2000, p. 18.

    Google Scholar 

  9. Sarkisov, P.D., Michailenko, N.Yu., Stroganova, E.E., et al., Glass-Based Bioactive Calcium Phosphate Materials, Proc. XIX Int. Congress on Glass, Edinburg, 2001, p. 23.

  10. Suchanek, W. and Yoshimura, M., Processing and Properties of HA-Based Biomaterials for Use as Hard Tissue Replacement Implants, J. Mater. Res. Soc., 1998, vol. 13, no. 1, pp. 94–103.

    Google Scholar 

  11. Hing, K.A., Best, S.M., Tanner, K.A., et al., Quantification of Bone Ingrowth within Bone Derived Porous Hydroxyapatite Implants of Varying Density, J. Mater.Sci.: Mater. Med., 1999, vol. 10, no. 10/11, pp. 633–670.

    Google Scholar 

  12. Krajewski, A., Ravaglioli, A., Roncari, E., et al., Porous Ceramic Bodies for Drug, J. Mater. Sci.: Mater. Med., 2000, vol. 11, no. 12, pp. 763–772.

    Google Scholar 

  13. Paul, W. and Sharma, C.P., Development of Porous Spherical Hydroxyapatite Granules: Application towards Protein Delivery, J. Mater. Sci.: Mater. Med., 1999, vol. 10, no. 7, pp. 383–388.

    Google Scholar 

  14. Vaz, L., Lopes, A.B., and Almeida, M., Porosity Control of Hydroxyapatite Implants, J. Mater. Sci.: Mater. Med., 1999, vol. 10, no. 10/11, pp. 239–242.

    Google Scholar 

  15. Lio, D., Fabrication of Hydroxyapatite Ceramic with Controlled Porosity, J. Mater. Sci.: Mater. Med., 1997, vol. 8, no. 8, pp. 227–232.

    Google Scholar 

  16. Itokazu, M., Esaki, M., Yamamoto, K., et al., Local Drug Delivery System Using Ceramics: Vacuum Method for Impregnating a Chemotherapeutic Agent into a Porous Hydroxyapatite Block, J. Mater. Sci.: Mater. Med., 1999, vol. 10, no. 4, pp. 249–252.

    Google Scholar 

  17. Lu, J.X., Flautre, B., and Anselme, K., Role of Interconnections in Porous Bioceramics on Bone Recolonization In Vitro and In Vivo, J. Mater. Sci.: Mater. Med., 1999, vol. 10, no. 2, pp. 111–120.

    Google Scholar 

  18. Yamamoto, M., Tabata, Y., Kawasaki, H., and Ikada, Y., Promotion of Fibrovascular Tissue Ingrowth into Porous Sponges by Basic Fibroblast Growth Factor, J.Mater. Sci.: Mater. Med., 2000, vol. 11, no. 14, pp. 213–218.

    Google Scholar 

  19. Weinlander, M., Plenk, H., Jr., Adar, F., and Holmes, R., Bioceramics and the Human Body, Ravaglioli, A. and Krajewski, A., Eds., London: Elsevier, 1992, p. 317.

    Google Scholar 

  20. Samusev, R.P. and Selin, Yu.M., Anatomiya cheloveka (Human Anatomy), Moscow: Meditsina, 1990.

    Google Scholar 

  21. Martin, R.B., Bone as a Ceramic Composite Material, Mater. Sci. Forum, 1999, vol. 7, no. 1, pp. 5–16.

    Google Scholar 

  22. Gunderson, S.L. and Schiavone, R.C., International Encyclopedia of Composites, Lee, S.M., Ed., New York: VCH, 1991, vol. 5.

    Google Scholar 

  23. Katz, J.L., The Mechanical Properties of Biological Materials, Cambridge: Cambridge Univ. Press, 1980.

    Google Scholar 

  24. Barinov, S.M. and Shevchenko, V.Ya., Prochnost' tekhnicheskoi keramiki (Strength of Technical Ceramics), Moscow: Nauka, 1997.

    Google Scholar 

  25. Shevchenko, V.Ya. and Barinov, S.M., Tekhnicheskaya keramika (Technical Ceramics), Moscow: Nauka, 1993.

    Google Scholar 

  26. Buravov, A.D., Barinov, S.M., Grigorjev, O.N., et al., Carbon-and Ceramic-Matrix Composites, London: Chapman and Hall, 1995, p. 380.

    Google Scholar 

  27. Monma, H.J., Processing of Synthetic Hydroxyapatite, J. Ceram. Soc. Jpn., Dent. Res., 1980, vol. 8, no. 40, pp. 97–102.

    Google Scholar 

  28. Slosarczyk, A., Stobierska, E., Paszkiewicz, Z., and Gawlicki, M., Calcium Phosphate Materials Prepared from Precipitates with Various Calcium: Phosphorus Molar Ratios, J. Am. Ceram. Soc., 1996, vol. 79, no. 10, pp. 2539–2544.

    Google Scholar 

  29. Mortier, A., Lemaitre, J., Rondrique, L., et al., Synthesis and Thermal Behavior of Well Crystallized Calcium-Deficient Phosphate Apatite, J. Solid State Chem., 1989, vol. 26, no. 2, pp. 215–219.

    Google Scholar 

  30. Barinov, S.M. and Komlev, V.S., Hydroxyapatite-Base Granules for Targeted and Time-Controlled Drug Delivery, Book of Lectures Presented at the 3rd Course on Biomaterials, Rustichelli, F. and Davidson, C., Eds., Ancona, 2001, pp. 1–7.

  31. Klyuchnikov, N.G., Rukovodstvo po neorganicheskomu sintezu (A Guide to Inorganic Synthesis), Moscow: Khimiya, 1965.

    Google Scholar 

  32. Kibal'chits, V. and Komarov, V.F., High-Speed Synthesis of Hydroxyapatite Crystals, Zh. Neorg. Khim., 1980, vol. 25, no. 2, pp. 565–567.

    Google Scholar 

  33. Orlovskii, V.P. and Barinov, S.M., Hydroxyapatite and Hydroxyapatite-Matrix Ceramics: A Survey, Russ. J.Inorg. Chem., 2001, vol. 46, no. 2, pp. 129–149.

    Google Scholar 

  34. Aizawa, M., Hanazawa, T., Itatani, K., et al., Characterization of Hydroxyapatite Powders Prepared by Ultrasonic Spray-Pyrolysis Technique, J. Mater. Sci., 1999, vol. 34, no. 12, p. 2865.

    Google Scholar 

  35. Kokubo, T., Potential of Ceramics as Biomaterials, Ceramics and Society, Brook, R.J., Ed., Faenza: Techna, 1995.

    Google Scholar 

  36. Orlovskii, V.P., Ezhova, Zh.A., Rodicheva, G.V., et al., Hydroxyapatite Phase Relations in the System CaCl2–(NH4)2HPO4–NH4OH–H2O (25°C), Zh. Neorg. Khim., 1992, vol. 37, no. 4, pp. 881–883.

    Google Scholar 

  37. Orlovskii, V.P., Ezhova, Zh.A., Rodicheva, G.V., et al., Structural Transformations of Hydroxyapatite in the Range 100–1600°C, Zh. Neorg. Khim., 1990, vol. 34, no. 5, p. 1337.

    Google Scholar 

  38. Turova, N.Ya. and Yanovskaya, M.I., Synthesis of Hydroxyapatite Crystals, Izv. Akad. Nauk SSSR, Neorg.Mater., 1983, vol. 19, no. 5, p. 693.

    Google Scholar 

  39. Hench, L.L., Bioceramics and the Future, Ceramics and Society, Brook, R.J., Ed., Faenza: Techna, 1995.

    Google Scholar 

  40. Zhang, S. and Gonsalves, K.E., Preparation and Characterization of Thermally Stable Nanohydroxyapatite, J. Mater. Sci.: Mater. Med., 1997, vol. 8, no. 8, pp. 25–28.

    Google Scholar 

  41. Elliort, J.C., Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Amsterdam: Elsevier, 1994.

    Google Scholar 

  42. Dubok, V.A. and Ul'yanin, N.V., Synthesis, Properties, and Applications of Osteotropic Substitute Materials Based on Hydroxyapatite Ceramics, Ortop., Travmatol.Protez., 1998, vol. 6, no. 3, pp. 26–30.

    Google Scholar 

  43. Feenstra, L. and de Groot, K., Bioceramics of Calcium Phosphate, Boca Raton: CRC, 1983.

    Google Scholar 

  44. Jarcho, M., Bolen, C.H., Thomas, M.B., et al., Synthesis and Characterization in Dense Polycrystalline Form, J. Mater. Sci., 1976, vol. 11, no. 10, p. 2027.

    Google Scholar 

  45. Yubao, L., de Groot, K., de Wijn, J., et al., Morphology and Composition of Nanograde Calcium Phosphate Needle-like Crystals Formed by Simple Hydrothermal Treatment, J. Mater. Sci.: Mater. Med., 1994, vol. 5, pp. 326–331.

    Google Scholar 

  46. Yubao, L., Klein, C.P., de Wijn, J., et al., Shape Change and Phase Transition of Needle-like Non-Stoichiometric Apatite Crystals, J. Mater. Sci.: Mater. Med., 1991, vol. 2, no. 1, pp. 51–55.

    Google Scholar 

  47. Orlovskii, V.P., Ionov, S.P., and Rusakova, R.A., Hydroxyapatite Phase Relations in the System CaCl2–(NH4)2HPO4–NH4OH–H2O, Dokl. Akad. Nauk, 1992, vol. 325, no. 5, p. 522.

    Google Scholar 

  48. Orlovskii, V.P. and Ionov, S.P., Synthesis of Hydroxyapatite in the System CaCl2–(NH4)2HPO4–NH4OH–H2O, Zh. Neorg. Khim., 1995, vol. 40, no. 12, p. 1961.

    Google Scholar 

  49. Vincent, J., Structural Biomaterials, Princeton: Princeton Univ. Press, 1990.

    Google Scholar 

  50. Kelly, A., Strong Solids, London: Oxford Univ. Press, 1971. Translated under the title Vysokoprochnye materialy, Moscow: Mir, 1976.

    Google Scholar 

  51. Hosoi, K., Hashida, T., Takahashi, H., et al., New Processing Technique for Hydroxyapatite Ceramics by the Hydrothermal Hot-Pressing Method, J. Am. Ceram.Soc., 1996, vol. 80, no. 10, pp. 2771–2774.

    Google Scholar 

  52. Hench, L.L., Bioceramics: From Concept to Clinic, J.Am. Ceram. Soc., 1991, vol. 75, no. 7, pp. 1487–1510.

    Google Scholar 

  53. LeGeros, R.Z., Biodegradation and Bioresorption of Calcium Phosphate Ceramics, J. Clin. Mater., 1993, vol. 35, no. 14, p. 65.

    Google Scholar 

  54. De With, G., Van Dijk, H.J.A., Hattu, N., and Prijs, K., Preparation, Microstructure, and Mechanical Properties of Dense Polycrystalline Hydroxyapatite, J. Mater. Sci., 1981, vol. 16, no. 7, pp. 1592–1598.

    Google Scholar 

  55. Hech, L.L., Bioceramics, J. Am. Ceram. Soc., 1998, vol. 82, no. 7, pp. 1705–1733.

    Google Scholar 

  56. Ruys, A.J., Wei, M., Sorrell, C.C., et al., Sintering Effects on Strength of Hydroxyapatite, Biomaterials, 1995, vol. 16, no. 5, pp. 409–415.

    PubMed  Google Scholar 

  57. Wang, P.E. and Chaki, T.K., Sintering Behavior and Mechanical Properties of Hydroxyapatite and Dicalcium Phosphate, J. Mater. Sci.: Mater. Med., 1993, vol. 4, no. 3, pp. 150–158.

    Article  Google Scholar 

  58. Cuneyt Tas, A., Korkusuz, E., Timucin, M., and Akkas, N., An Investigation of the Chemical Synthesis and High Temperature Sintering Behavior of Calcium HA and Tricalcium Phosphate Bioceramics, J. Mater.Sci.: Mater. Med., 1997, vol. 8, no. 2, pp. 91–96.

    Google Scholar 

  59. Fateeva, L.V., Golovkov, Yu.M., Barinov, S.M., et al., Effect of Sodium Phosphate on the Sintering Behavior of Hydroxyapatite Ceramics, Ogneupory Tekh. Keram., 2001, no. 1, p. 6.

    Google Scholar 

  60. Santos, J.D., Reis, R.L., Monteiro, F.J., et al., Liquid Phase Sintering of Hydroxyapatite by Phosphate and Silicate Glass Additions: Structure and Properties of the Composites, J. Mater. Sci.: Mater. Med., 1995, vol. 6, no. 4, p. 348.

    Google Scholar 

  61. Ratner, B.D., New Ideas in Biomaterials Sciences—Path to Engineering Biomaterials, J. Biomed. Mater.Res., 1993, vol. 27, no. 6, pp. 837–850.

    PubMed  Google Scholar 

  62. Solov'ev, M.M., Ivasenko, I.N., Alekhova, T.M., et al., Effect of Hydroxyapatite on Cavity Healing in Carious Teeth, Stomatologiya, 1992, nos. 3–6, pp. 8–10.

    Google Scholar 

  63. Hupp, J.R. and Me Kenna, S.J., Use of Porous Hydroxylapatite Blocks for Augmentation of Atrophic Mandibles, J. Oral Maxillofac. Surg., 1998, no. 7, pp. 538–545.

    Google Scholar 

  64. Stahe, S.S. and Frourn, S.J., Histologic and Clinical Responses to Porous Hydroxylapatite Implants in Human Periodontal Defects: Three to Twelve Months Postimplantation, J. Periodontol., 1987, no. 10, pp. 689–695.

    Google Scholar 

  65. Uchida, A., Nade, S., Eric, M., and Ching, W., Bone Ingrowth into Three Different Porous Ceramics Implanted into the Tibia of Rats and Rabbits, J. Orthop.Res., 1985, no. 3, pp. 65–77.

    PubMed  Google Scholar 

  66. Uchida, A., Shinto, Y., Araki, N., and Ono, K., Slow Release of Anticancer Drugs from Porous Calcium Hydroxyapatite Ceramic, J. Orthop. Res., 1992, no. 10, pp. 440–445.

    PubMed  Google Scholar 

  67. Slosarzyk, A., Stobierska, E., and Paszkiewicz, Z., Porous Hydroxyapatite Ceramics, J. Mater. Sci. Lett., 1999, vol. 19, no. 18, p. 1163.

    Google Scholar 

  68. Yamasaki, N., Kai, T., Nishioka, M., et al., Porous Hydroxyapatite Ceramics Prepared by Hydrothermal Hot-Pressing, J. Mater. Sci. Lett., 1990, vol. 10, no. 10, p. 1150.

    Google Scholar 

  69. Tanner, K.E., Downes, R.N., and Bonfield, W., Clinical Application of Hydroxyapatite Reinforced Polyethylene, Br. Ceram. Trans. J., 1994, no. 3, pp. 104–107.

    Google Scholar 

  70. Liu, D., Preparation and Characterization of Porous HA Bioceramic via a Slip-Casting Route, J. Ceram. Int., 1997, vol. 24, no. 4, pp. 441–446.

    Google Scholar 

  71. Engin, N.O. and Tas, A.C., Preparation of Porous Ca10(PO 4)6(OH)2 and bgr -Ca 3(PO4)2 Bioceramics, J.Am. Ceram. Soc., 2000, vol. 84, no. 7, pp. 1581–1584.

    Google Scholar 

  72. Sepulveda, P., Ortega, F.S., and Murilo, D.M., Properties of Highly Porous Hydroxyapatite Obtained by the Gel Casting of Foams, J. Am. Ceram. Soc., 2000, vol. 3, no. 12, pp. 3021–3024.

    Google Scholar 

  73. Komlev, V.S., Barinov, S.M., Orlovskii, V.P., and Kurdyumov, S.G., Porous Hydroxyapatite Ceramics with a Bimodal Pore Size Distribution, Ogneupory Tekh. Keram., 2001, no. 6, pp. 23–25.

  74. Donath, K., Relation of Tissue to Calcium Phosphate Ceramics, Osseous, 1991, vol. 1, p. 100.

    Google Scholar 

  75. Durucan, C. and Brown, P.W., α-Tricalcium Phosphate Hydrolysis to Hydroxyapatite at and near Physiological Temperature, J. Mater. Sci.: Mater. Med., 2000, vol. 11, no. 6, p. 365.

    Google Scholar 

  76. Krasulin, Yu.L., Barinov, S.M., and Ivanov, V.S., Struktura i razrushenie materialov iz poroshkov tugoplavkikh soedinenii (Structure and Fracture of Materials Prepared from Powders of Refractory Compounds), Moscow: Nauka, 1985.

    Google Scholar 

  77. Andrievskii, R.A., Strength of Sintered Bodies, Poroshk. Metall. (Kiev), 1982, no. 1, p. 37.

    Google Scholar 

  78. Metsger, D.S., Rieger, M.R., and Foreman, D.W., Mechanical Properties of Sintered Hydroxyapatite and Tricalcium Phosphate Ceramic, J. Mater. Sci.: Mater.Med., 1999, vol. 10, no. 1, p. 9.

    Google Scholar 

  79. Hing, K.A., Best, S.M., and Bonfield, W., Characterization of Porous Hydroxyapatite, J. Mater. Sci.: Mater.Med., 1999, vol. 10, no. 3, pp. 135–145.

    Google Scholar 

  80. Tas, A.C. and Ozgur Engin, N., Manufacture of Macroporous Calcium Hydroxyapatite Bioceramics, J.Eur. Ceram. Soc., 1999, vol. 19, no. 13/14, p. 2569.

    Google Scholar 

  81. Nakajima, T., Ichiro Ono, M.D., and Tohru Tateshita, M.D., Porous Hydroxyapatite Ceramics and Their Ability to Be Fixed by Commercially Available Screws, Biomaterials, 1999, vol. 20, no. 17, p. 1595.

    PubMed  Google Scholar 

  82. Roncari, E., Galassi, C., and Pinasco, P., Tape Casting of Porous Hydroxyapatite Ceramics, J. Mater. Sci. Lett., vol. 20, no. 1, pp. 33–35.

  83. Powers, J.M., Yaszemski, M.J., Thomson, R.C., and Mikos, A.G., Hydroxyapatite Fiber Reinforced Poly(ahydroxy ester) Foams for Bone Regeneration, Biomaterials, 1998, vol. 19, no. 21, pp. 1935–1943.

    PubMed  Google Scholar 

  84. Yoshio Ota, Y., Iwashita, T., Kasuga, T., et al., Novel Preparation Method of Hydroxyapatite Fibers, J. Am.Ceram. Soc., 1998, vol. 81, no. 6, pp. 1665–1733.

    Google Scholar 

  85. Klassen, P.V. and Grishaev, I.G., Osnovy tekhniki granulirovaniya (Fundamentals of Granulation), Moscow: Khimiya, 1982.

    Google Scholar 

  86. Komlev, V.S., Barinov, S.M., and Fadeeva, I.V., Porous Hydroxyapatite Ceramic Granules for Drug Delivery Systems, Novye Tekhnol.–21 Vek, 2001, no. 5, pp. 18–19.

    Google Scholar 

  87. Komlev, V.S., Barinov, S.M., Orlovskii, V.P., and Kurdyumov, S.G., Porous Hydroxyapatite Ceramic Granules, Ogneupory Tekh. Keram., 2001, no. 5, pp. 18–20.

    Google Scholar 

  88. Gautier, H., Merle, C., Auget, J.L., and Daculsi, G., Isostatic Compression, a New Process for Incorporating Vancomycin into Biphasic Calcium Phosphate: Comparison with a Classical Method, Biomaterials, 2000, vol. 21, no. 2, pp. 243–249.

    PubMed  Google Scholar 

  89. Kovalevskii, A.M., Surgical Treatment of Generalized Parodontitis Using Biopolymers and Bioceramics: A Clinical–Experimental Investigation, Cand. Sci. (Med.) Dissertation, St. Petersburg, 1998.

  90. Fedosenko, T.D., Application of Hydroxyapatite Preparations in Combined Therapy of Parodontopathy, Extended Abstract of Cand. Sci. (Med.) Dissertation, St.Petersburg, 1994.

  91. Chernysh, V.F., Shutov, Yu.N., and Kovalevskii, A.M., New Methods in Parodontium Surgery, Parodontologiya, 1997, no. 4, pp. 19–23.

    Google Scholar 

  92. Dash, A.K. and Cudworth, G.C., Therapeutic Applications of Implantable Drug Delivery Systems, J. Pharmacol.Toxicol. Methods, 1998, no. 1, pp. 1–12.

    Google Scholar 

  93. Chien, Y.W., Novel Drug Delivery Systems, New York: Marcel Dekker, 1992, 2nd ed.

    Google Scholar 

  94. Lasserre, A. and Bajpai, P.K., Ceramic Drug-Delivery Devices, Crit. Rev. Therap. Drug Carrier Syst., 1998, no. 11, pp. 1–56.

    Google Scholar 

  95. Tyle, P., Drug Delivery Devices: Fundamentals and Applications, New York: Marcel Dekker, 1988.

    Google Scholar 

  96. Morrell, R., Handbook of Properties of Technical and Engineering Ceramics. Part 1: An Introduction for the Engineer and Designer, London: Her Majesty's Stationary Office, 1989.

    Google Scholar 

  97. Leont'ev, V.K., Volozhin, A.I., Kurdyumov, S.G., et al., Clinical Application of the New Preparations Gidroksiapol and Kolapol: First Results, Stomatologiya, 1995, no. 5, p. 69.

    Google Scholar 

  98. Komlev, V.S., Porous Hydroxyapatite Ceramics and Related Composites, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Moscow: Inst. of Physicochemical Problems in Ceramic Science, Russ. Acad. Sci., 2001.

    Google Scholar 

  99. Dewith, G. and Gorbijn, A.T., Metal Fibre Reinforced Hydroxyapatite Ceramics, J. Mater. Sci., 1989, vol. 24, no. 14, pp. 3411–3415.

    Google Scholar 

  100. Tamari, N., Kondo, N., Mouki, M., et al., Effect of Calcium Fluoride Addition on Densification and Mechanical Properties of Hydroxyapatite–Zirconia Composite Ceramics, J. Ceram. Soc. Jpn., 1987, vol. 95, no. 8, p. 806.

    Google Scholar 

  101. Li, J., Forbreg, S., and Hermansson, L., Evaluation of the Mechanical Properties of Hot Isostatically Pressed Titania and Titania–Calcium Phosphate Composites, Biomaterials, 1991, vol. 12, no. 5, pp. 438–440.

    PubMed  Google Scholar 

  102. Young-Min Kong, Y.M., Sona Kim, S., and Lee, S., Reinforcement of Hydroxyapatite Bioceramic by Addition of ZrO2 Coated with Al2O3, J. Am. Ceram. Soc., 1999, vol. 83, no. 11, p. 2963.

    Google Scholar 

  103. Towler, M.R. and Gibson, I.R., The Effect of Low Levels of Zirconia Addition of the Mechanical Properties of Hydroxyapatite, J. Mater. Sci. Lett., 2001, vol. 20, no. 18, p. 1719.

    Google Scholar 

  104. Bakos, D., Soldan, M., and Hernandez-Fuentes, I., Hydroxyapatite–Collagen–Hyaluronic Acid Composite, Biomaterials, 1999, vol. 20, no. 2, pp. 191–195.

    PubMed  Google Scholar 

  105. Bonfield, W., Grynpas, M.D., Tully, A.E., et al., Hydroxyapatite Reinforced Polyethylene—a Mechanically Compatible Implant, Biomaterials, 1981, vol. 2, no. 1, pp. 137–156.

    Google Scholar 

  106. Dalby, M.J., Di Silvio, L., Harper, E.J., and Bonfield, W., In Vitro Evaluation of New Polymethylmethacrylate Cement Reinforced with Hydroxyapatite, J. Mater. Sci.: Mater. Med., 1999, vol. 10, no. 12, p. 793.

    Google Scholar 

  107. Ignjatovic, N. and Delijic, K., The Designing of Properties of Hydroxyapatite/Poly-L-lactide Composite Biomaterials by Hot Pressing, J. Zeit. Metal., 2001, vol. 92, no. 2, pp. 145–149.

    Google Scholar 

  108. Knepper, M., Moricca, S., and Milthorpe, B.K., Stability of Hydroxyapatite While Processing Short-Fibre Reinforced Hydroxyapatite Ceramics, Biomaterials, 1997, vol. 18, no. 23, p. 1523.

    PubMed  Google Scholar 

  109. Di Silvio, L., Dalby, M., and Bonfield, W., In Vitro Response of Osteoblasts to Hydroxyapatite-Reinforced Polyethylene Composites, J. Mater. Sci.: Mater. Med., 1998, vol. 9, no. 12, pp. 845–848.

    Article  Google Scholar 

  110. Wang, M., Bonfield, W., and Joseph, R., Hydroxyapatite– Polyethylene Composites for Bone Substitution: Effects of Ceramic Particle Size, Biomaterials, 1998, vol. 18, no. 24, pp. 2357–2366.

    Google Scholar 

  111. Watson, K.E., Tenhuisen, K.S., and Brown, P.W., The Formation of Hydroxyapatite–Calcium Polyacrylate Composites, J. Mater. Sci.: Mater. Med., 1999, vol. 10, no. 4, pp. 205–213.

    Google Scholar 

  112. Okuno, M. and Shikinami, Y., Bioresorbable Devices Made of Forged Composites of Hydroxyapatite (HA) Particles and Poly-L-lactide (PLLA): Part I: Basic Characteristics, Biomaterials, 1999, vol. 19, no. 9, p. 859.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlovskii, V.P., Komlev, V.S. & Barinov, S.M. Hydroxyapatite and Hydroxyapatite-Based Ceramics. Inorganic Materials 38, 973–984 (2002). https://doi.org/10.1023/A:1020585800572

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020585800572

Keywords

Navigation