Skip to main content
Log in

Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The polarization processes occurring at the electrode–electrolyte interfaces of solid oxide fuel cells (SOFC) were investigated by electrochemical impedance spectra measured at single cells under realistic operating conditions. The approach presented is based on distributions of relaxation times which are the basic quantity of interest in electrochemical impedance data analysis. A deconvolution method was developed and implemented that yields these characteristic distribution patterns directly from the impedance spectra. In contrast to nonlinear least squares curve fit of equivalent circuit models, no a priori circuit choice has to be made. Even more importantly, the excellent resolving capacity allows the untangling of the impedance contributions of up to three physically distinct processes within one frequency decade. With the method, processes with the highest polarization losses can be identified and targeted to improve cell performance. Based on the distributions, a general strategy for the identification of the reaction mechanisms is given. The evaluation of the distributions in terms of peak parameters is illustrated by a physical model for oxygen reduction at the SOFC cathode–electrolyte interface. The method is expected to find many applications in electrochemistry beyond the field of solid oxide fuel cell development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.Q. Minh, J. Am. Ceram. Soc. 76 (1993) 563.

    Google Scholar 

  2. M. Williams, ‘Solid Oxide Fuel Cells VII’, Electrochem. Soc. Proc. Ser. (2001), p. 3.

  3. T. Nakayama and M. Suzuki, ‘Solid Oxide Fuel Cells VII’, Electrochem. Soc. Proc. Ser. (2001), p. 8.

  4. J.R. Macdonald, ‘Impedance Spectroscopy’ (J. Wiley & Sons, New York, 1987).

    Google Scholar 

  5. J.E. Bauerle, J. Phys. Chem. Solids 30 (1969) 2657.

    Google Scholar 

  6. K.W. Wagner, Ann. Phys. 40 (1913) 817.

    Google Scholar 

  7. R.M. Fuoss and J.G. Kirkwood, J. Am. Chem. Soc. 63 (1941) 385.

    Google Scholar 

  8. K.S. Cole and R.H. Cole, J. Chem. Phys. 9 (1941) 341.

    Google Scholar 

  9. D.L. Misell and R.J. Sheppard, J. Phys. D: Appl. Phys. 6 (1973) 379.

    Google Scholar 

  10. A.D. Franklin and H.J. de Bruin, Phys. Stat. Sol. (a) 75 (1983) 647.

    Google Scholar 

  11. R. Colonomos and R.G. Gordon, J. Chem. Phys. 71 (1979) 1159.

    Google Scholar 

  12. F.D. Morgan and D.P. Lesmes, J. Chem. Phys. 100 (1994) 671.

    Google Scholar 

  13. J.L. Salefran and Y. Dutuit, J. Chem. Phys. 74 (1981) 3056.

    Google Scholar 

  14. K. Giese, Adv. Mol. Relaxation Proc. 5 (1973) 363.

    Google Scholar 

  15. K.S. Paulson, A. Jouravleva and C.N. McLeod, IEEE Trans. Biomed. Eng. 47 (2000) 1510.

    Google Scholar 

  16. E. Ivers-Tiffèe, A. Weber and D. Herbstritt, J. Europ. Cer. Soc. 21 (2001) 1805.

    Google Scholar 

  17. A. Weber, A. ü, D. Herbstritt and E. Ivers-Tiffée, ‘Solid Oxide Fuel Cells VII’, Electrochem. Soc. Proc. Ser. (2001), p. 952.

  18. H.J. Weaver, ‘Theory of discrete and continuous Fourier analysis', (J. Wiley & Sons, New York, 1989).

    Google Scholar 

  19. R. Hamming, ‘Digital Filters’ (Prentice Hall, Englewood Cliffs, NJ, 1983).

    Google Scholar 

  20. Scilab computer algebra system, ftp://ftp.inria.fr/INRIA/Scilab/ (Paris, 2000).

  21. A.L. Smirnova, K.R. Ellwood and G.M. Crosbie, J. Electrochem. Soc. 148 (2001) 610.

    Google Scholar 

  22. Relaxtool homepage at http://www.relaxtool.de/.

  23. H. Schichlein, A. Müller, A. Krügel and E. Ivers-Tiffée, Proc. 4th European SOFC Forum, Lucern (2000), p. 369.

  24. A. Mitterdorfer and L.J. Gauckler, Solid State Ionics 117 (1999) 187.

    Google Scholar 

  25. P. Agarwal and M.E. Orazem, J. Electrochem. Soc. 139 (1992) 1917.

    Google Scholar 

  26. B.A. Boukamp, Solid State Ionics 62 (1993) 131.

    Google Scholar 

  27. M. Urquidi-Macdonald and D.D. Macdonald, J. Electrochem. Soc. 133 (1986) 2018.

    Google Scholar 

  28. B.A. Boukamp and J.R. Macdonald, Solid State Ionics 74 (1994) 85.

    Google Scholar 

  29. C. Gabrielli and M. Keddam, Electrochim. Acta 41 (1996) 957.

    Google Scholar 

  30. H. Schichlein, A. Müller, M. Voigts, A. Krügel and E. Ivers-Tiffée, ‘Solid Oxide Fuel Cells VII’, Electrochem. Soc. Proc. Ser. (2001), p. 564.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Schichlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schichlein, H., Müller, A., Voigts, M. et al. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. Journal of Applied Electrochemistry 32, 875–882 (2002). https://doi.org/10.1023/A:1020599525160

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020599525160

Navigation