Skip to main content
Log in

Gas-Dynamic Methods of Temperature Stratification (a Review)

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The known methods of gas-dynamic temperature stratification are reviewed. Attention is concentrated on an analysis of the possibilities of the gas dynamic stratification method proposed by the author. The method is based on the difference between the equilibrium temperature of a thermally insulated wall in supersonic flow and the adiabatic stagnation temperature of the gas. Certain possible practical applications of the method to various types of energy-converting apparatus are considered. The basic trends of fundamental and applied research in the field of gas-dynamic temperature stratification are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. S. Seol and R. J. Goldstein, “Energy separation in a jet flow,” Trans. ASME. J. Fluid Eng., 119, 74 (1997).

    Google Scholar 

  2. R. J. Goldstein and W. S. Seol, “Heat transfer to a row of impinging circular air jets including the effect of entrainment,” Intern J. Heat Mass Transfer, 34, 2133 (1991).

    Google Scholar 

  3. E. Eckert and O. Drewitz, “Die Berechnung des Temperaturfeldes in der laminarenGrenzschicht schnell angeströmter unbeheizter Körper,” Luftfahrtforschung, 19, 189 (1942).

    Google Scholar 

  4. L. F. Ryan, Experiments on Aerodynamic Cooling, Ph. O. Thesis, Zürich, Eiden. Techn. Hochschule (1951).

  5. M. Kurosaka, “Acoustic streaming in swirling flow and the Ranque-Hilsch effect,” J. Fluid Mech., 124, 139 (1982).

    Google Scholar 

  6. V. I. Kuznetsov, Theory and Calculation of the Ranque Effect [in Russian], Izd-vo OmGTU, Omsk (1995).

    Google Scholar 

  7. C. D. Fulton, “Ranque's tube,” Refrig. Engng., 5, 473 (1950).

    Google Scholar 

  8. W. Frohlingsdorf and H. Uger, “Numerical investigation of the compressible flow and the energy separation in the Ranque-Hilsch vortex tube,” Intern J. Heat Mass Transfer, 42, 415 (1999).

    Google Scholar 

  9. H. Sprenger, “Über thermische Effekte in Resonanzrohren,” Mitt. Inst. Aerodynamik, No. 21, 18 (1954).

    Google Scholar 

  10. O. N. Emin, S.P. Zaritskii, and A. V. Moravskaya, “Experimental investigation of the operation of ejectors in regimes with negative ejection coefficient,” Teploenergetika, No. 10 (1972).

  11. A. A. Stolyarov, “Features of thermal energy separation in a gas ejector,” Izv. Akad. Nauk SSSR, Energetika i Transport, 19, 159 (1981).

    Google Scholar 

  12. A. A. Stolyarov, “Energy separation effect in a two-phase flow,” Inzh.-Fiz. Zh., 31, 474 (1976).

    Google Scholar 

  13. A. M. Arkharov, I. V. Marfenina, and E. I. Mikulin, Cryogenic Systems, Vol. 1 [in Russian], Mashinostroenie, Moscow (1996).

    Google Scholar 

  14. A. I. Leont'ev, “Gas-dynamic method of gas flow energy separation,” Teplofisika Vysokikh Temperatur, 35, 157 (1997).

    Google Scholar 

  15. S. A. Burtsev, “Optimization of geometry of a supersonic channel in an energy-separation unit,” Vest. MGTU, Ser. Mashinostroenie, No. 2, 48 (1999).

    Google Scholar 

  16. S. A. Khristianovich, V. G. Hal'perin, M. D. Millionshchikov, and L. A. Simonov, Applied Gas Dynamics [in Russian], TsAGI, Moscow (1948).

    Google Scholar 

  17. A. A. Gukhman, “On theory of limiting states of a traveling gas,” Zh. Tekh. Fiz., 9, 411 (1939).

    Google Scholar 

  18. A. I. Leont'ev, “Temperature stratification of a supersonic gas flow,” Dokl. Ross. Akad. Nauk, 354, 475 (1997).

    Google Scholar 

  19. H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York (1968).

    Google Scholar 

  20. S. S. Kutateladze and A. I. Leont'ev, Heat and Mass Transfer and Friction in the Turbulent Boundary Layer [in Russian], Energoatomizdat, Moscow (1985).

    Google Scholar 

  21. Handbook of Heat Transfer Application, McGraw-Hill, N. Y. (1986).

  22. S. A. Burtsev and A. I. Leont'ev, “Temperature stratification in a supersonic gas flow,” Izv. Ross. Akad. Nauk, Energetika No. 5, 101 (2000).

    Google Scholar 

  23. M. E. Deich and G. A. Filippov, Gas Dynamics of Two-Phase Media [in Russian], Energiya, Moscow (1968).

    Google Scholar 

  24. A. I. Leont'ev, V. L. Samsonov, and K. L. Shmidt, “Closed gas-turbine apparatus for solar orbital power plants,” Teploenergetika, No. 3, 68 (1983).

    Google Scholar 

  25. I. A. Gachechiladze, G. I. Kiknadze, Yu. K. Krasnov et al., “Heat transfer in self-organizing whirlwind-like structures,” in: MMF Heat Transfer: Proc. Minsk Intern. Forum. Probl. Stud. [in Russian], Izd-vo ITMO, Minsk (1988), p. 83.

    Google Scholar 

  26. V. N. Afanas'ev, P. S. Roganov, and Ya. P. Chudnovskii, “Heat transfer processes in turbulent flow past the regular relief of spherical concavities,” Inzh.-Fiz. Zh., 63, 23 (1992).

    Google Scholar 

  27. Yu. A. Vinogradov, I. K. Ermolaev, M. M. Strongin, S. M. Bednov, A. Yu. Golikov, and E. V. Dilevskaya, “Restoration and heat transfer coefficients in vortex flows,” [in Russian], Institute of Mechanics of Moscow State University, Report No. 4575 (2000).

  28. A. I. Leont'ev, N. L. Shchegolev, V. V. Nosatov, and S. Strelyukhin, “A new gas dynamic method of temperature stratification of gases,” in: “Gas Turbine and Combined Apparatus and Engines”, Collected Annotations of Papers of 10th All Russia Institute Science Technology Conference [in Russian], Izd vo GPNTB, Moscow (1996), P.76.

    Google Scholar 

  29. A. I. Leont'ev et al. (Eds.), Scientific Foundations of XXIst Century Technologies [in Russian], UNPTs “Energomach”, Moscow (2000).

  30. A. I. Leont'ev, “Thermal gas dynamic cycles of thermal and refrigeratingmachines,” Problemy Energetiki, No. 1–2, 5 (1999).

    Google Scholar 

  31. A. I. Leont'ev, “Gas dynamic cycles of thermal and refrigerating machines,” in: Thermodynamics and the Optimization of Complex Energy Systems, Kluwer, Amsterdam (1999), P. 271.

    Google Scholar 

  32. A. I. Leont'ev and K. L. Shmidt, “Compression free ideal cycle of a closed gas turbine apparatus,” Izv. Ross. Akad. Nauk, Energetika, No. 3, 132 (1997).

    Google Scholar 

  33. A. I. Leont'ev and K. L. Shmidt, “Ideal cycle of a power laser apparatus with gas dynamic regeneration,” Izv. Ross. Akad. Nauk, Energetika, No. 5, 74 (1997).

    Google Scholar 

  34. R. I. Kurziner, Jet Engines for High Supersonic Flight Velocities [in Russian], Mashinostroenie, Moscow (1977).

    Google Scholar 

  35. A. N. Shapiro, K. R. Wadleigh, B. D. Vavril, and A. A. Fowle, “The aerothermopressor— a device for improving the performance of a gas turbine power plant,” Trans. ASME., 78, 617 (1956).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leont'ev, A.I. Gas-Dynamic Methods of Temperature Stratification (a Review). Fluid Dynamics 37, 512–529 (2002). https://doi.org/10.1023/A:1020629000437

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020629000437

Navigation