Skip to main content
Log in

Which side of the π-macrocycle plane of (bacterio)chlorophylls is favored for binding of the fifth ligand?

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Reported crystallographic data and calculated molecular models indicated that chlorophyll (Chl) a and bacteriochlorophyll (BChl) a tend to bind the fifth ligand on the side of the macrocycle where the C132-(R)-methoxycarbonyl moiety protrudes (denoting the ‘back’ side). The crystal structures of 34 photosynthetic proteins possessing (B)Chl cofactors revealed that most of Chl a and BChl a (and b) are coordinated by any peptidyl residue (e.g., histydyl-imidazolyl group), peptidyl backbone or water from the ‘back’ side. Almost all the cofactors that bind a water molecule as the fifth ligand in these proteins have a ‘back’ configuration. Theoretical model calculations for methyl chlorophyllide a (MeChlid a) and methyl bacteriochlorophyllide a (MeBChlid a) bound to an imidazole molecule indicated that the ‘back’ side is energetically favored for the ligand binding. These results are consistent with the fact that ethyl chlorophyllide a (EtChlid a) dihydrate crystal consists of the ‘back’ complex. The modeling also showed that both removal and stereochemical inverse of the C132-methoxycarbonyl group affect the relative stability between the ‘back’ and ‘face’ complexes. The effect of the C132-moiety on the choice of the macrocycle side for the ligand binding is discussed in relation to the function of P700.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnoux B, Gaucher JF, Ducruix A and Reisshusson F (1995) Structure of the photochemical reaction center of a spheroidene-containing purple bacterium, Rhodobacter-sphaeroides Y, at 3 Å resolution. Acta Cryst D 51: 368–379

    Article  CAS  Google Scholar 

  • Axelrod HL, Abresch EC, Paddock ML, Okamura MY and Feher G (2000) Determination of the binding sites of the proton transfer inhibitors Cd2+ and Zn2+ in bacterial reaction centers. Proc Natl Acad Sci USA 97: 1542–1547

    Article  PubMed  CAS  Google Scholar 

  • Chang CH, El-Kabbani O, Tiede D, Norris J and Schiffer M (1991) Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry 30: 5352–5360

    Article  PubMed  CAS  Google Scholar 

  • Chirino AJ, Lous EJ, Huber M, Allen JP, Schenck CC, Paddock ML, Feher G and Rees DC (1994) Crystallographic analyses of site-directed mutants of the photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry 33: 4584–4593

    Article  PubMed  CAS  Google Scholar 

  • Chow H-C, Serlin R and Strouse CE (1975) The crystal and molecular structure and absolute configuration of ethyl chlorophyllide a dihydrate. A model for the different spectral forms of chlorophyll a. J Am Chem Soc 97: 7230–7237

    Article  CAS  Google Scholar 

  • Davis CM, Parkes-Loach PS, Cook CK, Meadows KA, Bandilla M, Scheer H and Loach PA (1996) Comparison of the structural requirements for bacteriochlorophyll binding in the core light-harvesting complexes of Rhodospirillum rubrum and Rhodobacter spaeroides using reconstitution methodology with bacteriochlorophyll analogs. Biochemistry 35: 3072–3084

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Sinning I and Michel H (1995) Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol 246: 429–457

    Article  PubMed  CAS  Google Scholar 

  • Ermler U, Fritzsch G, Buchanan SK and Michel H (1994) Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution: cofactors and protein-cofactor interactions. Structure 2, 925–936

    Article  PubMed  CAS  Google Scholar 

  • Fromme P, Jordan P and Krauß N (2001) Structure of Photosystem I. Biochim Biophys Acta 1507: 5–31

    Article  PubMed  CAS  Google Scholar 

  • Fyfe PK, Ridge JP, McAuley KE, Cogdell RJ, Isaacs NW and Jones MR (2000) Structural consequences of the replacement of glycine M203 with aspartic acid in the reaction center from Rhodobacter sphaeroides. Biochemistry 39: 5953–5960

    Article  PubMed  CAS  Google Scholar 

  • Gudowska-Nowak E, Newton MD and Fajer J (1990) Conformational and environmental effects on bacteriochlorophyll optical spectra: correlations of calculated spectra with structural results. J Phys Chem 94: 5795–5801

    Article  CAS  Google Scholar 

  • Helfrich M, Schoch S, Lempert U, Cmiel E and Rüdiger W (1994) Chlorophyll synthetase cannot synthesize chlorophyll a'. Eur J Biochem 219: 267–275

    Article  PubMed  CAS  Google Scholar 

  • Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W and Diederichs K (1996) Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science 272: 1788–1791

    PubMed  CAS  Google Scholar 

  • Holzwarth AR and Schaffner K (1994) On the structure of bacteriochlorophyll molecular aggregates in the chlorosomes of green bacteria. A molecular modeling study. Photosynth Res 41: 225–233

    Article  CAS  Google Scholar 

  • Hutter MC, Hughes JM, Reimers JR and Hush NS (1999) Modeling the bacterial photosynthetic reaction center. 2. A combined quantum mechanical/molecular mechanical study on the structure of the cofactors in the reaction centers of purple bacteria. J Phys Chem B 103:4906–4915

    Article  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Å resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Kashiwada A, Watanabe H, Mizuno T, Iida K, Miyatake T, Tamiaki H, Kobayashi M and Nango M (2000) Structural requirements of zinc porphyrin derivatives on the complex-forming with light-harvesting polypeptides. Chem Lett: 158–159

  • Kehoe JW, Meadows KA, Parkes-Loach PS amd Loach PA (1998) Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides. 2. Determination of structural features that stabilize complex formation and their implications for the structure of the subunit complex. Biochemistry 37: 3418–3428

    Article  PubMed  CAS  Google Scholar 

  • Kirmaier C, Holten D, Bylina EJ and Youvan DC (1988) Electron transfer in a genetically modified bacterial reaction center containing a heterodimer. Proc Natl Acad Sci USA 85: 7562–7566

    Article  PubMed  CAS  Google Scholar 

  • Koepke J, Hu X, Muenke C, Schulten K and Michel H (1996) The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure 4: 581–597

    Article  PubMed  CAS  Google Scholar 

  • Kratky C and Dunitz JD (1975) Comparison of the results of two independent analyses of the ethylchlorophyllide a dihydrate crystal structure. Acta Cryst B 31: 1586–1589

    Article  Google Scholar 

  • Kratky C and Dunitz JD (1977a) Ordered aggregation states of chloropyll a and some derivatives. J Mol Biol 113: 431–442

    Article  PubMed  CAS  Google Scholar 

  • Kratky C and Dunitz JD (1977b) Methylchlorophyllide a dihydrate. Acta Cryst B 33: 545–547

    Article  Google Scholar 

  • Kratky C, Isenring HP and Dunitz JD (1977) Methylpyrochlorophyllide a monohydrate monoetherate. Acta Cryst B 33: 547–549

    Article  Google Scholar 

  • Kuglstatter A, Ermler U, Michel H, Baciou L and Fritzsch G (2001) X-ray structure analyses of photosynthetic reaction center variants from Rhodobacter spaeroides: structural changes induced by point mutations at position L209 modulate electron and proton transfer. Biochemistry 40: 4253–4260

    Article  PubMed  CAS  Google Scholar 

  • Lancaster CRD and Michel H (1997) The coupling of light-induced electron transfer and proton uptake as derived from crystal structures of reaction centres from Rhodopseudomonas viridis modi-fied at the binding site of the secondary quinone, QB. Structure 5: 1339–1359

    Article  PubMed  CAS  Google Scholar 

  • Lancaster CRD and Michel H (1999) Refined crystal structures of reaction centres from Rhodopseudomonas viridis in complexes with the herbicide atrazine and two chiral atrazine derivatives also lead to a new model of the bound carotenoid. J Mol Biol 286: 883–898

    Article  PubMed  CAS  Google Scholar 

  • Lancaster CRD, Bibikova MV, Sabatino P, Oesterhelt D and Michel H (2000) Structural basis of the drastically increased initial electron transfer rate in the reaction center from a Rhodopseudomonas viridis mutant described at 2.00-Å resolution. J Biol Chem 275: 39364–39368

    Article  PubMed  CAS  Google Scholar 

  • Li Y-F, Zhou W, Blankenship RE and Allen JP (1997) Crystal structure of the bacteriochlorophyll a protein from Chlorobium tepidum. J Mol Biol 271: 456–471

    Article  PubMed  CAS  Google Scholar 

  • McAuley KE, Fyfe PK, Ridge JP, Isaacs NW, Cogdell RJ and Jones MR (1999) Structural details of an interaction between cardiolipin and an integral membrane protein. Proc Natl Acad Sci USA 96: 14706–14711

    Article  PubMed  CAS  Google Scholar 

  • McAuley-Hecht KE, Fyfe PK, Ridge JP, Prince SM, Hunter CN, Isaacs NW, Cogdell RJ and Jones MR (1998) Structural studies of wild-type and mutant reaction centers from an antenna-deficient strain of Rhodobacter sphaeroides: monitoring the optical properties of the complex from bacterial cell to crystal. Biochemistry 37: 4740–4750

    Article  PubMed  CAS  Google Scholar 

  • McLuskey K, Prince SM, Cogdell RJ and Isaacs NW (2001) The crystallographic structure of the B800-820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila strain 7050. Biochemistry 40: 8783–8789

    Article  PubMed  CAS  Google Scholar 

  • Nogi T, Fathir I, Kobayashi M, Nozawa T and Miki K (2000) Crystal structures of photosynthetic reaction center and high-potential iron-sulfur protein from Thermochromatium tepidum: thermostability and electron transfer. Proc Natl Acad Sci USA 97: 13561–13566

    Article  PubMed  CAS  Google Scholar 

  • Prince SM, Papiz MZ, Freer AA, McDermott G, Hawthornthwaite-Lawless AM, Cogdell RJ and Isaacs NW (1997) Apoprotein structure in the LH2 complex from Rhodopseudomonas acidophila strain 10050: modular assembly and protein pigment interactions. J Mol Biol 268: 412–423

    Article  PubMed  CAS  Google Scholar 

  • Ridge JP, Fyfe PK, McAuley KE, van Brederode ME, Robert B, van Grondelle R, Isaacs NW, Cogdell RJ and Jones MR (2000) An examination of how structural changes can affect the rate of electron transfer in a mutated bacterial photoreaction centre. Biochem J 351: 567–578

    Article  PubMed  CAS  Google Scholar 

  • Serlin R, Chow H-C and Strouse CE (1975) The crystal and molecular structure of ethyl chlorophyllide b dihydrate at — 153°. J Am Chem Soc 97: 7237–7242

    Article  CAS  Google Scholar 

  • Stowell MHB, McPhillips TM, Rees DC, Solitis SM, Abresch E and Feher G (1997) Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science 276: 812–816

    Article  PubMed  CAS  Google Scholar 

  • Tamiaki H, Yagai S and Miyatake T (1998) Synthetic zinc tetrapyrroles complexing with pyridine as a single axial ligand. Bioorg Med Chem 6: 2171–2178

    Article  PubMed  CAS  Google Scholar 

  • Thompson MA and Fajer J (1992) Calculations of bacteriochlorophyll g primary donors in photosynthetic heliobacteria. How to shift the energy of a phototrap by 2000 cm-1. J Phys Chem 96: 2933–2935

    Article  CAS  Google Scholar 

  • Tronrud DE, Shmid MF and Matthews BW (1986) Structure and Xray amino-acid sequence of a bacteriochlorophyll-a protein from Prosthecochloris aestuarii refined at 1.9 Å resolution. J Mol Biol 188: 443–454

    Article  PubMed  CAS  Google Scholar 

  • Yeates TO, Komiya H, Chirino A, Rees DC, Allen JP and Feher G (1988) Structure of the reaction-center from Rhodobacter sphaeroides R-26 and 2.4.1: protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions. Proc Natl Acad Sci USA 85: 7993–7997

    Article  PubMed  CAS  Google Scholar 

  • Webber AN and Lubitz W (2001) P700: the primary electron donor of photosystem I. Biochim Biophys Acta 1507: 61–79

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Tamiaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oba, T., Tamiaki, H. Which side of the π-macrocycle plane of (bacterio)chlorophylls is favored for binding of the fifth ligand?. Photosynthesis Research 74, 1–10 (2002). https://doi.org/10.1023/A:1020816128794

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020816128794

Navigation