Skip to main content
Log in

Direct Numerical Simulation of the Interaction between a Shock Wave and Various Types of Isotropic Turbulence

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Direct Numerical Simulation (DNS) is used to study the interaction between normal shock waves of moderate strength (M 1= 1.2 and M 1 = 1.5) and isotropic turbulence. A complete description of the turbulence behaviour across the shock is provided and the influence of the nature of the incoming turbulence on the interaction is investigated. The presence of upstream entropy fluctuations satisfying the Strong Reynolds Analogy enhances the amplification of the turbulent kinetic energy and transverse vorticity variances across the shock compared to the solenoidal (pure vorticity) case. Budgets for the fluctuating-vorticity variances are computed, showing that the baroclinic torque is responsible for this additional production of transverse vorticity. More reduction of the transverse Taylor microscale and integral scale is also observed in the vorticity-entropy case while no influence can beseen on the longitudinal Taylor microscale. When the upstream turbulence is dominated by acoustic and vortical fluctuations, less amplification of the kinetic energy (for Mach numbers between 1.25 and 1.8), less reduction of the transverse microscale and more amplification of the transverse vorticity variance are observed through the shock compared to the solenoidal case. In all cases, the classic estimation of Batchelor relating the dissipation rate and the integral scale of the flow proves to be invalid. These results are obtained with the same numerical tool and similar flow parameters, and they are in good agreement with Linear Interaction Analysis (LIA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barre, S., Alem, D. and Bonnet, J.-P., Experimental study of a normal shock/homogeneous turbulence interaction. AIAA J. 34 (1996) 968-974.

    ADS  Google Scholar 

  2. Batchelor, G.K., The Theory of Homogeneous Turbulence. Cambridge University Press, Cambridge (1953).

    MATH  Google Scholar 

  3. Briassulis, G. and Andreopoulos, J., High resolution measurements of isotropic turbulence interacting with shock waves. AIAA Paper 96-0042 (1996).

  4. Debiève, J.-F. and Lacharme, J.-P., A shock wave/free turbulence interaction. In: Delery, J. (ed.), Turbulent Shear Layer/Shock Wave Interactions. Springer-Verlag, Berlin (1985) pp. 393-403.

    Google Scholar 

  5. Dubois, T., Domaradzki, J.A. and Honein, A., The subgrid-scale estimation model applied to large eddy simulations of compressible turbulence. Phys. Fluids A 14(5) (2002) 1781-1801.

    Article  ADS  Google Scholar 

  6. Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu C. and Poinsot, T., Large eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152 (1999) 517-549.

    Article  MATH  ADS  Google Scholar 

  7. Erlebacher, G., Hussaini, M.Y., Kreiss, H.O. and Sarkar, S., The analysis and simulation of compressible turbulence. Theor. Comput. Fluid Dynam. 2 (1990) 73-95.

    MATH  ADS  Google Scholar 

  8. Fabre, D., Jacquin, L., Garnier, E. and Sagaut, P., Linear interaction analysis: The effect of a shock wave on a homogeneous perturbation field and on an entropy spot. In: Turbulence in High Speed Compressible Flows, Euromech 403, </del> Poitiers (1999).

    Google Scholar 

  9. Fabre, D., Jacquin, L. and Sesterhenn, J., Linear interaction of a cylindrical entropy spot with a shock. Phys. Fluids A 13(8) (2001) 2403-2422.

    Article  ADS  Google Scholar 

  10. Garnier, E., Sagaut, P. and Deville, M., A class of explicit ENO filters with application to unsteady flows. J. Comput. Phys. 170(1) (2001) 184-204.

    Article  MATH  ADS  Google Scholar 

  11. Garnier, E., Sagaut, P. and Deville, M., Large eddy simulation of shock/homogeneous turbulence interaction. Comput. & Fluids 31(2) (2002) 245-268.

    Article  Google Scholar 

  12. Hanjalić, K. and Launder, B.E., Contribution towards a Reynolds-stress closure for low-Reynolds-number turbulence. J. Fluid Mech. 4 (1976) 593-610.

    Article  ADS  Google Scholar 

  13. Hannappel, R. and Friedrich, R., Direct numerical simulation of a Mach 2 shock interacting with isotropic turbulence. Appl. Sci. Res. 54 (1995) 205-221.

    Article  MATH  ADS  Google Scholar 

  14. Hinze, J., Turbulence. MacGraw-Hill, New York (1975).

    Google Scholar 

  15. Honkan, A. and Andreopoulos, J., Experiments in a shock wave/homogeneous turbulence interaction. AIAA Paper 90-1647 (1990).

  16. Honkan, A. and Andreopoulos, J., Rapid compression of grid-generated turbulence by amoving shock wave. Phys. Fluids A Schumann, U. and Whitelaw, J.H. (eds), Proceedings of the Eighth Symposium on Turbulent Shear Flows, Springer-Verlag, Berlin (1991) pp. 1-6.

    Google Scholar 

  17. Jacquin, L., Cambon C. and Blin, E., Turbulence amplification by a shock wave and rapid distortion theory. Phys. Fluids A 5(10) (1993) 2539-2550.

    Article  MATH  ADS  Google Scholar 

  18. Jacquin, L. and Geffroy, P., Amplification and reduction of turbulence in a heated jet/shock interaction. In: Durst, F., Launder, B.E., Schmidt, F.W. and Whitelaw, J.H. (eds), Proceedings of the Eleventh Symposium on Turbulent Shear Flows. Springer-Verlag, Berlin (1997) pp. L12-L17.

    Google Scholar 

  19. Jamme, S., Étude de l'interaction entre une turbulence homogène isotrope et une onde de choc. Ph.D. Thesis, Institut National Polytechnique de Toulouse (1998).

  20. Keller, J. and Merzkirch, W., Interaction of a normal shock wave with a compressible turbulent flow. Exp. Fluids 8 (1990) 241-248.

    Article  Google Scholar 

  21. Kovasznay, L.S.G., Turbulence in supersonic flow. J. Aero. Sci. 20 (1953) 657-682.

    MATH  Google Scholar 

  22. Launder, B.E. and Sharma, B.I., Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transfer 1 (1974) 131-138.

    Article  ADS  Google Scholar 

  23. Lee, S., Lele, S.K. and Moin, P., Interaction of isotropic turbulence with a shock wave. Report TF-52, Thermosciences Division, Mechanical Engineering Department, Stanford University (1992).

  24. Lee, S., Lele, S.K. and Moin, P., Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow. Phys. Fluids A 4 (1992) 1521-1530.

    Article  MATH  ADS  Google Scholar 

  25. Lee, S., Lele, S.K. and Moin, P., Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. Fluid Mech. 251 (1993) 533-562.

    Article  ADS  Google Scholar 

  26. Lee, S., Lele, S.K. and Moin, P., Interaction of isotropic turbulence with shock waves: Effect of shock strength. J. Fluid Mech. 340 (1997) 225-247.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. MacCormack, R.W., The effect of viscosity on hypervelocity impact cratering. AIAA Paper 69-354 (1969).

  28. Mahesh, K., Lee, S., Lele, S.K. and Moin, P., The interaction of an isotropic field of acoustic waves with a shock wave. J. Fluid Mech. 300 (1995) 383-407.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Mahesh, K., Moin, P. and Lele, S.K., The interaction of a shock wave with a turbulent shear flow. Report TF-69, Thermosciences Division, Mechanical Engineering Department, Stanford University (1996).

  30. Mahesh, K., Lele, S.K. and Moin, P., The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J. Fluid Mech. 334 (1997) 353-379.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Moore, F.K., Unsteady oblique interaction of a shock wave with a plane disturbance. NACA TN 2879 (1953).

  32. Orszag, S.A. and Patterson, G.S., Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28 (1972) 76-79.

    Article  ADS  Google Scholar 

  33. Ribner, H.S., Convection of a pattern of vorticity through a shock wave. NACA TN 2864 (1953).

  34. Ribner, H.S., Shock/turbulence interaction and the generation of noise. NACA TN 3255 (1954).

  35. Ribner, H.S., Spectra of noise and amplified turbulence emanating from shock/turbulence interaction. AIAA J. 35 (1987) 436-442.

    Article  ADS  Google Scholar 

  36. Rotman, D., Shock wave effects on a turbulent flow. Phys. Fluids A 3 (1991) 1792-1806.

    Article  MATH  ADS  Google Scholar 

  37. Tavouralis, S., Bennet, J.C. and Corrsin, S., Velocity derivative skewness in small Reynolds number, nearly isotropic turbulence. J. Fluid Mech. 176 (1978) 63-69.

    ADS  Google Scholar 

  38. Thompson, K.W., Time dependent boundary conditions for hyperbolic systems I. J. Comput. Phys. 68 (1987) 1-24.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Thompson, K.W., Time dependent boundary conditions for hyperbolic systems II. J. Comput. Phys. 89 (1990) 439-461.

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamme, S., Cazalbou, JB., Torres, F. et al. Direct Numerical Simulation of the Interaction between a Shock Wave and Various Types of Isotropic Turbulence. Flow, Turbulence and Combustion 68, 227–268 (2002). https://doi.org/10.1023/A:1021197225166

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021197225166

Navigation