Skip to main content
Log in

Elastodynamic Unilateral Contact Problems with Friction for Bodies with Cracks

  • Published:
International Applied Mechanics Aims and scope

Abstract

A complete and consistent review is made of the results of studies into the contact interaction of crack edges by methods of fracture mechanics. Also some new results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Abramowitz and I. A. Stegun, “Handbook of mathematical functions, with formulas, graphs and mathematical tables,” Appl. Math. Ser., 55 (1964).

  2. J. D. Achenbach, “Dynamic effects in brittle fracture,” in: S. Nemat-Nasser (ed.), Mechanics Today, Vol. 1, Pergamon, New York (1974), pp. 1–57.

    Google Scholar 

  3. R. A. Adams, Sobolev Spaces, Academic Press, New York (1975).

    Google Scholar 

  4. M. H. Aliabadi, “Boundary element formulations in fracture mechanics,” Appl. Mech. Rev., 50, No. 2, 83–96 (1997).

    Google Scholar 

  5. M. H. Aliabadi and D. P. Rooke, Numerical Fracture Mechanics, Comput. Mech. Publ., Southampton (1991).

    Google Scholar 

  6. H. Antes and P. D. Panagiotopoulos, The Boundary Integral Approach to Static and Dynamic Contact Problems, Birkhauser, Basel-Boston-Berlin (1992).

    Google Scholar 

  7. J. Balas, J. Sladek, and V. Sladek, Stress Analysis by Boundary Element Methods, Elsevier, Amsterdam (1989).

    Google Scholar 

  8. P. K. Banerjee, Boundary Element Method in Engineering Science, McGraw Hill, New York-London (1994).

    Google Scholar 

  9. R. E. Bellman, R. E. Kalaba, and J. Lockett, Numerical Inversion of the Laplace Transform: Application to Biology, Economics, Engineering and Physics, Amer. Elsevier, New York (1966).

    Google Scholar 

  10. D. E. Beskos, “Boundary element methods in dynamic analysis,” Appl. Mech. Rev., 40, No. 1, 1–23 (1987).

    Google Scholar 

  11. D. E. Beskos, “Boundary element methods in dynamic analysis: Part II (1986-1996),” Appl. Mech. Rev., 50, No. 3, 149–197 (1997).

    Google Scholar 

  12. J. T. Chen and H.-K. Hong, “Review of dual boundary element methods with emphasis on hypersingular integrals and divergent series,” Appl. Mech. Rev., 52, No. 1, 17–33 (1999).

    Google Scholar 

  13. G. P. Cherepanov, Mechanics of Brittle Fracture, McGraw Hill, New York (1979).

    Google Scholar 

  14. S. N. Atluri, Computational Methods in the Mechanics of Fracture, North-Holland, New York (1986).

  15. T. A. Cruse, Boundary Element Analysis in Computational Fracture Mechanics, Kluwer Academic Publishers, Dordrecht-Boston-London (1988).

    Google Scholar 

  16. J. Dominguez, Boundary Elements in Dynamics, Comput. Mech. Publ., Southampton (1993).

    Google Scholar 

  17. G. Duvaut and J.-L. Lions, Inequalities in Physics and Mechanics, Springer-Verlag, Berlin (1979).

    Google Scholar 

  18. I. Ekeland and R. Témam, Convex Analysis and Variational Problems, North-Holland, Amsterdam (1975).

    Google Scholar 

  19. A. C. Eringen and E. S. Suhubi, Linear Theory, Vol. 2 of the series Elastodynamics, Academic Press, New York (1975).

    Google Scholar 

  20. G. Fichera, “Boundary value problems of elasticity with unilateral constraints,” in: S. Flugge (ed.), Encyclopedia of Physics, Vol. Vla/2, Springer-Verlag, Berlin (1972).

    Google Scholar 

  21. H. Liebowitz (ed.), Fracture. An Advanced Treatise, Vols. 1-7, Acad. Press, New York-London (1968-1972).

    Google Scholar 

  22. G. P. Cherepanov (ed.), Fracture. A Topical Encyclopedia of Current Knowledge, Krieger Publ Comp. Malabar, Florida (1998).

    Google Scholar 

  23. L. B. Freund, Dynamic Fracture Mechanics, Cambridge University Press, New York (1990).

    Google Scholar 

  24. I. M. Gel'fand and G. E. Shilov, Generalized Functions, Vol. 1, Academic Press, New York (1964).

    Google Scholar 

  25. R. Glowinski, J.-L. Lions, and R. Tremolieres, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam (1981).

    Google Scholar 

  26. A. N. Guz, Brittle Fracture of Materials with Initial Stresses, Vol. 2 of the four-volume five-book series Nonclassical Problems of Fracture Mechanics [in Russian], Naukova Dumka, Kiev (1991).

    Google Scholar 

  27. A. N. Guz, “Formulation of problems in dynamic fracture mechanics,” Int. Appl. Mech., 35, No. 6, 531–536 (1999).

    Google Scholar 

  28. A. N. Guz, “Description and study of some nonclassical problems of fracture mechanics and related mechanisms,” Int. Appl. Mech., 36, No. 12, 1537–1564 (2000).

    Google Scholar 

  29. A. N. Guz, “On foundation of nondestructive method of determination of three-axis stresses in solids,” Int. Appl. Mech., 37, No. 7, 899–905 (2001).

    Google Scholar 

  30. A. N. Guz, V. D. Kubenko, and M. A. Cherevko, Diffraction of Elastic Waves [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  31. A. N. Guz and F. G. Makhort, “The physical fundamentals of the ultrasonic nondestructive stress analysis of solids,” Int. Appl. Mech., 36, No. 9, 1119–1149 (2000).

    Google Scholar 

  32. A. N. Guz and V. V. Zozulya, “Dynamic problems of the elasticity theory with restrictions in the form of inequalities,” Dokl. AN USSR, Ser. A, Fiz. Mat. Tekhn. Nauki, 5, 47–50 (1991).

    Google Scholar 

  33. A. N. Guz and V.V. Zozulya, “Dynamic problem for a plane with a slit, including the interaction of the edges,” Dokl. AN USSR, 318, No. 2, 304–307, (1991).

    Google Scholar 

  34. A. N. Guz. and V.V. Zozulya, “Dynamic contact problem for a plane with two cracks,” Dokl. AN USSR, 321, No. 2, 278–280 (1991).

    Google Scholar 

  35. A. N. Guz, and V. V. Zozulya, “Contact interaction between crack edges under a dynamic load,” Prikl. Mekh., 28, No. 7, 407–414 (1992).

    Google Scholar 

  36. A. N. Guz (ed.) and V. V. Zozulya, Brittle Fracture of Structural Materials under Dynamic Loading, Vol. 4, Book 2 of the four-volume five-book series Nonclassical Problems of Fracture Mechanics [in Russian] Naukova Dumka, Kiev (1993).

    Google Scholar 

  37. A. N. Guz and V. V. Zozulya, “Dynamic problems of fracture mechanic, neglecting the contact interaction of the crack edges,” Prikl. Mekh., 30, No. 10, 3–22 (1994).

    Google Scholar 

  38. A. N. Guz and V. V. Zozulya, “Dynamic problems of fracture mechanic, including the contact interaction of the crack edges,” Prikl. Mekh., 31, No. 1, 1–31 (1995).

    Google Scholar 

  39. A. N. Guz and V. V. Zozulya, “About taking into account the contact of cracks edges under dynamic loads,” Mater. Sci., 32, No. 1, 38–52 (1996).

    Google Scholar 

  40. A. N. Guz and V. V. Zozulya, “Fracture dynamics with allowance for the contact interaction of crack edges,” Int. J. Nonlin. Sci. Numer. Simul., 2, No. 3, 173–233 (2001).

    Google Scholar 

  41. J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations, Yale University Press, New Haven (1923).

    Google Scholar 

  42. I. Hlavacek, J. Haslinger, J. Necas, and J. Lovisec, Solution of Variational Inequalities in Mechanics, Springer-Verlag, New York-Berlin-Heidelberg-London-Paris-Tokyo (1988).

    Google Scholar 

  43. N. Kikuchi and J. T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadephia (1987).

    Google Scholar 

  44. A. S. Kravchuk, “Theory of contact problems with allowance for friction on the surface of contact,” J. Appl. Mat. Mech., 44, No. 1, 122–129 (1980).

    Google Scholar 

  45. A. S. Kravchuk, “Variational method in dynamic contact problems,” in: Mechanics of Deformable Bodies and Structures [in Russian], Izd. AN Arm. SSR, Erevan (1985), pp. 235–241.

    Google Scholar 

  46. V. D. Kupradze, T. G. Gegelia, M. O. Bashelishvili, and T. V. Burkhuladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland, Amsterdam (1979).

    Google Scholar 

  47. A. K. Mal, “Interaction of elastic waves with a Griffith crack,” Int. J. Eng. Sci., 8 No. 8, 763–776 (1970).

    Google Scholar 

  48. G. D. Manolis, “A comparative study on three boundary element method approaches to problems in elastodynamics,” Int. J. Eng. Sci., 19, No. 1, 73–91 (1983).

    Google Scholar 

  49. G. D. Manolis and D. E. Beskos, Boundary Element Methods in Elastodynamics, Unwin Hyman (Champ & Hall), London (1988).

    Google Scholar 

  50. V. V. Mikhas'kiv, “Opening-function simulation of the three-dimensional nonstationary interaction of cracks in an elastic body,” Int. Appl. Mech., 37, No. 1, 75–84 (2001).

    Google Scholar 

  51. P. O. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions, Birkhauser, Stuttgart (1985).

    Google Scholar 

  52. P. O. Panagiotopoulos, Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer-Verlag, Berlin-Heidelberg-New York (1993).

    Google Scholar 

  53. V. Z. Parton and B. C. Boriskovskii, Dynamic Fracture Mechanics [in Russian], Mashinostroenie, Moscow (1985).

    Google Scholar 

  54. V. Z. Parton and B. G. Boriskovskii, Dynamics of Brittle Fracture [in Russian], Mashinostroenie, Moscow (1988).

    Google Scholar 

  55. G. Ya. Popov and Yu. A. Morozov, “Diffraction of a torsional wave coming from a center of rotation by a semi-infinite cylindrical crack,” Int. Appl. Mech., 37, No. 11, 1458–1464 (2001).

    Google Scholar 

  56. S. L. Sobolev, “Applications of functional analysis in mathematical physics,” in: Translation of American Mathematical Society, 7, Mathematical Monograph (1963).

  57. C. C. Spyrakos and H. Antes, “Time domain boundary element method approaches in elastodynamics: a comparative study,” Comput. Struct., 24, No. 4, 529–539 (1986).

    Google Scholar 

  58. G. E. Stavoulakis, H. Antes, and P. O. Panagiotopoulos, “Transient elasodynamics around cracks including contact and friction,” Comput. Meth. Appl. Mech. Eng., 177, No. 3/4, 427–440 (1999).

    Google Scholar 

  59. M. Tanaka, V. Sladek, and J. Sladek, “Regularization techniques applied to boundary element methods,” Appl. Mech. Rev., 47, No. 10, 457–499 (1994).

    Google Scholar 

  60. P. S. Theocaris and P. D. Panagiotopoulos, “On the consideration of unilateral contact and friction in cracks. The boundary integral method,” Int. J. Num. Meth. Eng., 35, 1697–1708 (1992).

    Google Scholar 

  61. G. P. Tolstov, Fourier Series [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  62. K. Washizu, Variational Methods in Elasticity and Plasticity, Pergamon Press, New York (1982).

    Google Scholar 

  63. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, London (1966).

    Google Scholar 

  64. J. Xing and Z. Zheng, “Some general theorems and generalized and piecewise generalized variational principles for linear elastodynamics,” Appl. Math. Mech., 13, No. 9, 825–840 (1992).

    Google Scholar 

  65. C. Zhang and D. Gross, On Wave Propagation in Elastic Solids with Cracks, Comput. Mech. Publ., Southampton (1998).

    Google Scholar 

  66. V. V. Zozulya, “On dynamic problems of the crack theory with regions of contact, engagement and slip,” Dokl. AN USSR, Ser. A, Fiz. Mat. Tekhn. Nauki, 47–50 (1990).

  67. V. V. Zozulya, “On solvability of dynamic problems of the theory of cracks with contact, adhesion, and slip areas,” Dokl. AN USSR, Ser. A, Fiz. Mat. Tekhn. Nauki, 3, 53–55 (1990).

  68. V. V. Zozulya, “On the action of a harmonic load on an infinite body with a crack whose edges interact,” Dokl. AN USSR, Ser. A, Fiz. Mat. Tekhn. Nauki, 4, 46–49 (1990).

    Google Scholar 

  69. V. V. Zozulya, “Integrals of Hadamard type in a dynamic problem of crack theory,” Dokl. AN USSR, Ser. A, Fiz. Mat. Tekhn. Nauki, 2, 19–22 (1991).

    Google Scholar 

  70. V. V. Zozulya, “Investigation of the contact of edges of cracks interacting with a plane, longitudinal, harmonic wave,” Sov. Appl. Mech., 27, No. 12, 1191–1195 (1991).

    Google Scholar 

  71. V. V. Zozulya, “Dynamic problem for a plane with two cracks, including the contact interaction of crack edges,” Dokl. AN USSR, Ser. A, Fiz. Mat. Tekhn. Nauki, 8, 75–80 (1991).

    Google Scholar 

  72. V. V. Zozulya, “Contact interaction between crack edges and an infinite plane under a harmonic load,” Prikl. Mekh., 28, No. 1, 61–65 (1992).

    Google Scholar 

  73. V. V. Z ozulya, “Study into the contact of crack edges under a harmonic wave,” Prikl. Mekh., 28, No. 2, 95–100 (1992).

    Google Scholar 

  74. V. V. Zozulya, “Method of boundary functionals in dynamic contact problems for bodies with cracks,” Dokl. AN Ukrainy, 2, 38–44 (1992).

    Google Scholar 

  75. V. V. Zozulya, “Harmonic loading of the edges of two colinear cracks in a plane,” Prikl. Mekh., 28, No. 3, 170–173 (1992).

    Google Scholar 

  76. V. V. Zozulya, “On solving dynamic problems for bodies with cracks using the method of boundary integral equations,” Dokl. AN Ukrainy, 3, 38–43 (1992).

    Google Scholar 

  77. V. V. Zozulya, “Variational principles and algorithms in contact problem with friction,” in: N. Mastorakis, V. Mladenov, R. Suter, and L. J. Wang (eds.), Advances in Scientific Computing, Computational Intelligence and Applications, WSES Press, Danvers (2001), pp. 181–186.

    Google Scholar 

  78. V. V. Zozulya, “Variational principles and algorithms in elastodynamic contact problem with friction,” in: S. N. Atluri, T. Nishioka, and M. Kikuchi (eds.), Advances in Computational and Engineering Sciences, Tech. Science Press, Puerto Vallarta, Mexico (2001).

    Google Scholar 

  79. V. V. Zozulya, “Fracture dynamics with allowance for crack edge contact interaction,” in: C. Constanda, P. Schiavone, and A. Mioduchowski, Integral Methods in Science and Engineering, Birkhauser, Boston (2002), pp. 257–262.

    Google Scholar 

  80. V. V. Zozulya, and N. V. Fenchenko, “Influence of contact interaction between the sides of crack on characteristics of failure mechanics in action of P-and SV-waves,” Int. Appl. Mech., 35, No. 2, 175–180 (1999).

    Google Scholar 

  81. V.V. Zozulya and P. I. Gonzalez-Chi, “Weakly singular, singular, and hypersingular integrals in elasticity and fracture mechanics,” J. Chinese Inst. Eng., 22, No. 6, 763–775 (1999).

    Google Scholar 

  82. V. V. Zozulya and P. I. Gonzalez-Chi, “Application of the BIE with hypersingular integrals in fracture mechanics,” in: C. A. Brebbia (ed.), Boundary Elements XXII, Computational Mechanics Publications, Southampton, UK and Boston, USA (2000), pp. 233–242.

    Google Scholar 

  83. V.V. Zozulya and P. I. Gonzalez-Chi, “Dynamic fracture mechanics with crack edges contact interaction,” Eng. Anal. Bound. Elem., 24, No. 9, 643–659 (2000).

    Google Scholar 

  84. V. V. Zozulya and A. N. Lukin, “Solution of three-dimensional problems in fracture mechanics by the method of boundary integral equations,” Int. Appl. Mech., 34, No. 6, 544–551 (1988).

    Google Scholar 

  85. V. V. Zozulya and V. A. Men'shikov, “Contact interaction between the edges of a crack in a plane under harmonic loading,” Int. Appl. Mech., 30, No. 12, 986–989 (1994).

    Google Scholar 

  86. V. V. Zozulya and V. A. Men'shikov, “Solution of three-dimensional problems of the dynamic theory of elasticity for bodies with cracks using hypersingular integrals,” Int. Appl. Mech., 36, No. 1, 74–81 (2000).

    Google Scholar 

  87. V. V. Zozulya and A. V. Men'shikov, “Contact interaction of the faces of a rectangular crack under normally incident tension-compression waves,” Int. Appl. Mech., 38, No. 3, 302–307 (2002).

    Google Scholar 

  88. V. V. Zozulya and A. V. Men'shikov, “On one contact problem in fracture mechanics for a normally incident tension-compression wave,” Int. Appl. Mech., 38, No. 7, 824–828 (2002).

    Google Scholar 

  89. V. V. Zozulya and O. V. Menshykov, “3-D fracture dynamics with allowance for crack edges contact interaction,” in: Proc. 15th ASCE Engineering Mechanics Division Conference, The Columbia University, New York (2002).

    Google Scholar 

  90. V. V. Zozulya and M. V. Men'shikova, “Study of iterative algorithms for solution of dynamic contact problems for elastic cracked bodies,” Int. Appl. Mech., 38, No. 5, 573–577 (2002).

    Google Scholar 

  91. V. V. Zozulya and M. V. Men'shikova, “Dynamic contact problem for a plane with a finite crack,” (to be published in Int. Appl. Mech., 38, No. 12 (2002)).

  92. V. V. Zozulya, and P. Rivera, “Dynamic fracture mechanics with crack edges contact interaction,” in: A. Kassab, M. Chopra, and C. A. Brebbia (eds.), Boundary Elements XX, Computational Mechanics Publications, Southampton, UK and Boston, New York (1998), pp. 23–32.

    Google Scholar 

  93. V. V. Zozulya, and P. Rivera, “Boundary integral equations and problem of existence in contact problems with friction,” J. Chinese Inst. Eng., 3, No. 3, 313–320 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guz, A.N., Zozulya, V.V. Elastodynamic Unilateral Contact Problems with Friction for Bodies with Cracks. International Applied Mechanics 38, 895–932 (2002). https://doi.org/10.1023/A:1021266113662

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021266113662

Keywords

Navigation