Skip to main content
Log in

Discriminant and quantitative PLS analysis of competitive CYP2C9 inhibitors versus non-inhibitors using alignment independent GRIND descriptors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

This study describes the use of alignment-independent descriptors for obtaining qualitative and quantitative predictions of the competitive inhibition of CYP2C9 on a serie of highly structurally diverse compounds. This was accomplished by calculating alignment independent descriptors in ALMOND. These GRid INdependent Descriptors (GRIND) represent the most important GRID-interactions as a function of the distance instead of the actual position of each grid-point. The experimental data was determined under uniform conditions. The inhibitor data set consists of 35 structurally diverse competitive stereospecific inhibitors of the cytochrome P450 2C9 and the non -inhibitor data set of 46 compounds. In a PLS discriminant analysis 21 inhibitors and 21 non-inhibitors (1 and 0 as activities) were analyzed using the ALMOND program obtaining a model with an r 2 of 0.74 and a cross-validation value (q 2) of 0.64. The model was externally validated with 39 compounds (14 inhibitors/25 non-inhibitors). 74% of the compounds were correctly predicted and an additional 13% was assigned to a borderline cluster. Thereafter, a model for quantitative predictions was generated by a PLS analysis of the GRIND descriptors using the experimental Ki-value for 21 of the competitive inhibitors (r 2=0.77, q 2=0.60). The model was externally validated using 12 compounds and predicted 11 out of 12 of the Ki-values within 0.5 log units. The discriminant model will be useful in screening for CYP2C9 inhibitors from large compound collections. The 3D-QSAR model will be used during lead optimization to avoid chemistry that result in inhibition of CYP2C9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stockman, B.J., et al., FEBS Lett., 283 (1991) 267–269.

    Google Scholar 

  2. Schaal, W., et al., J. Med. Chem., 44 (2001) 155–169.

    Google Scholar 

  3. Martin, Y.C., et al., J. Comput-Aided Mol. Design, 7(1992) 83–102.

    Google Scholar 

  4. CATALYST, Molecular Simulations: San Diego, CA.

  5. Ekins, S., et al., J. Pharmacol. Exp. Ther., 288 (1999) 21–29.

    Google Scholar 

  6. Ekins, S., M.J. de Groot, and J.P. Jones, Drug Metab. Dis., 29 (2001) 936–944.

    Google Scholar 

  7. Jones, J.P., et al., Drug Metab. Dis., 24(1996) 1–6.

    Google Scholar 

  8. Afzelius, L., et al., Mol. Pharmacol., 59 (2001) 909–919.

    Google Scholar 

  9. Goodford, P.J., J. Med. Chem., 28 (1985) 849–857.

    Google Scholar 

  10. Cramer, R.D.r., D.E. Patterson, and J.D. Bunce, J. Am. Chem. Soc., 110 (1988) 5959–5967.

    Google Scholar 

  11. Pastor, M., et al., J. Med. Chem., 43 (2000) 3233–3243.

    Google Scholar 

  12. Riganelli, D., et al., Pharm. Pharmacol. Lett., 3 (1993) 5–8.

    Google Scholar 

  13. Smith, D.A., M.J. Ackland, and B.C. Jones, Drug Discovery Today, 2 (1997) 406–414.

    Google Scholar 

  14. Murray, M., Int. J. Mol. Med., 3 (1999) 227–238.

    Google Scholar 

  15. Rendic, S. and F.J. Di Carlo, Drug Metab. Rev., 29 (1997) 413–580.

    Google Scholar 

  16. Masimirembwa, C.M., et al., Meth. Enzymol., (2001) submitted.

  17. Smith, D.A., M.J. Ackland, and B.C. Jones, Drug Discovery Today, 2 (1997) 479–485.

    Google Scholar 

  18. Sjöström, M., S. Wold, and B. Söderström. Proc. PARC in Practice, (1985) North-Holland.

  19. Wold, S., et al., Chemometrics: Mathematics and Statistics in Chemistry, K.B. R, Editor. 1984, Reidel Publishing Company, Holland: Dordrecht.

    Google Scholar 

  20. Bardsley, W.G., et al., Comput. Chem., 19 (1995) 75–)84.

    Google Scholar 

  21. Masimirembwa, C.M., et al., Drug Metabol. Dis., 27 (1999) 1117–1122.

    Google Scholar 

  22. Wold, S., K. Esbensen, and P. Geladi, Chem. Intell. Lab. Syst., 2 (1987) 37–52.

    Google Scholar 

  23. Oprea, T.I. and J. Gottfries, J. Combin. Chem., 3(2001) 157–166.

    Google Scholar 

  24. Olsson, T. and V. Shcherbukhin, Synthesis and Structure Administration (SaSA). 1997-2000, AstraZeneca, http://www.astrazeneca.com.

  25. Cruciani, G., M. Pastor, and W. Guba, Eur. J. Pharmaceut. Sci., 11 (2000) S29–39.

    Google Scholar 

  26. Miners, J.O. and D.J. Birkett, B. J. Clin. Pharmacol., 45 (1998) 525–538.

    Google Scholar 

  27. Rao, S., et al., J. Med. Chem., 43 (2000) 2789–2796.

    Google Scholar 

  28. Cruciani, G. and K.A. Watson, J. Med. Chem., 37 (1994) 2589–2601.

    Google Scholar 

  29. Baroni, M., et al., Quantit. Struct. Act. Rel., 12 (1993) 225–231.

    Google Scholar 

  30. Fedorov, V.V., Theory of Optimal Experiments. 1972, New York: Academic Press.

    Google Scholar 

  31. Albano, C., et al., Anal. Chim. Acta, 103 (1978) 429–443.

    Google Scholar 

  32. Cruciani, G., et al., Predictive Ability of Regression Models. Part I: Standard Deviation of Predicion Errors (SDEP). Journal of Chemometrics, 1992. 6: p. 335–346.

    Google Scholar 

  33. Box, G.E.P., W.G. Hunter, and S.J. Hunter, Statistics for experimenters. 1978: John Wiley.

  34. Baroni, M., et al., Quantit. Struct. Act. Rel., 12 (1993) 9–20.

    Google Scholar 

  35. Zamora, I., T.I. Oprea, and A.L. Ungell, J. Med. Chem., (2001) submitted.

  36. Hansch, C., Drug Metab. Rev., 1 (1972) 1–14.

    Google Scholar 

  37. Baroni, M., et al., Quantit. Struct. Act. Rel., 12 (1993) 9–20.

    Google Scholar 

  38. Miners, J.O., et al., Biochem. Pharmacol., 37 (1988) 1137–1144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lovisa Afzelius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afzelius, L., Masimirembwa, C.M., Karlén, A. et al. Discriminant and quantitative PLS analysis of competitive CYP2C9 inhibitors versus non-inhibitors using alignment independent GRIND descriptors. J Comput Aided Mol Des 16, 443–458 (2002). https://doi.org/10.1023/A:1021281008423

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021281008423

Navigation