Skip to main content
Log in

Exploration of the utility of fluctuating asymmetry as an indicator of river condition using larvae of the caddisfly Hydropsyche morosa (Trichoptera: Hydropsychidae)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Organisms are subject to three types of morphological asymmetry: Directional Asymmetry, Antiasymmetry and Fluctuating Asymmetry, but only the latter (FA) is related to the environmental stress acting upon individuals during their development. Larvae of Hydropsyche morosa from five rivers in Ontario, Canada, each exhibiting different degrees of human impact, were examined for FA. Specimens were obtained from collections in the Royal Ontario Museum dating back to 1951, and from fresh collections to 1999. Twelve morphological characters were assessed on both the left and right sides of 297 larvae, and eight of them demonstrated FA. There was a tendency to increase the levels of FA over time. Levels of nitrogen, conductivity and chloride in the river water, used as an index of pollution, were significantly and positively correlated with increasing incidence of FA in four of the characters, the remainder were independent of pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, 2nd edn. EPA 841-B-99-002. US EPA; Office of Water; Washington, D.C.

    Google Scholar 

  • Bloch, H., 1999. European water policy facing the new millennium: The EU Water Framework Directive. In Assessing the Ecological Integrity of Running Waters. Vienna, Austria, 9-11 November 1998.

  • Bonada, N., C. Zamora-Muñoz, M. Rieradevall & N. Prat, 2001. Factors implied on the changes in the caddisflies community along the Spanish Mediterranean coast. 2nd Symposium for European Freshwater Sciences. Abstract Book. Toulouse, France: 19.

  • Butler G. C., B. G. Bennet, D. R. Miller, J. K. Piotrowski & A. Sors, 1985. Methods for estimating exposure to chemicals. In Vouk, V. B., G. C. Butler, D. G. Hoel & D. B. Peakall (eds), Methods for Estimating Risk of Chemical Injury: Human and Non-human Biota and Ecosystems. John Wiley & Sons, New York: 7-28.

    Google Scholar 

  • Cairns J. Jr. & J. R. Pratt, 1993. A history of biological monitoring using benthic macroinvertebrates. In Rosenberg, D. M. & V. Resh (eds), Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman & Hall, Nova York, Londres: 10-27.

    Google Scholar 

  • Camago, J. A. & J. V. Ward, 1995. Nitrate (NO3-N) Toxicity to aquatic life: a proposal of safe concentrations for two species of nearctic freshwater invertebrates. Chemosphere 31: 3211-3216.

    Google Scholar 

  • Carter, J. L. & V. H. Resh, 2001. After site selection and before data analysis: sampling, sorting, and laboratory procedures used in stream benthic macroinvertebrate monitoring programs by USA state agencies. J. n. am. Benthol. Soc. 20(4): 658-682.

    Google Scholar 

  • Champely S., B. Guinard, J. Thioulousse & A. Clermidy, 1997. Functional data analysis of curve asymmetry with application to the color pattern of Hydropsyche contubernalis head capsule. Biometrics 53: 294-305.

    Google Scholar 

  • Charvet S., A. Kosmala & B. Statzner, 1998. Biomonitoring through biological traits of benthic macroinvertebrates: perspectives for a general tool in stream management. Arch. Hydrobiol. 142: 415-432.

    Google Scholar 

  • Chovarec, A., P. Jäger, M. Jungwirth, V. Koller-Kreimel, O. Moog, S. Muhar & S. T. Schmutz, 2000. The Austrian way of assessing the ecological integrity of running waters: a contribution to the EU Water Framework Directive. Hydrobiologia 422/423: 445-452.

    Google Scholar 

  • Clarke G. M., 1993. Fluctuating asymmetry of invertebrate populations as a biological indicator of environmental quality. Envir. Pollut. 82: 207-211.

    Google Scholar 

  • Clarke G. M., A. H. Arthingtin & B. J. Pusey, 1995. Fluctuating asymmetry of chironomid larvae as an indicator of pesticide contamination in freshwater environments. In Cranston, P. (ed.), Chironomids: from Genus to Ecosystems. CSIRO, Australia: 101-109.

    Google Scholar 

  • Coimbra C. N., M. A. S. Graça & R. M. Cortes, 1996. The effects of a basic effluent on macroinvertebrate community structure in a temporary mediterranean river. Envir. Pollut. 94: 301-307.

    Google Scholar 

  • Dobrin M. & L. D. Corkum, 1999. Can Fluctuating Asymmetry in adult burrowing mayflies (Hexagenia rigida, Ephemeroptera) be used as a measure of contaminant stress? J. Great Lakes Res. 25: 339-346.

    Google Scholar 

  • Docampo, L., 1995. Calidad ecológica del agua. Comparación el índice fisicoquímico de Prati con el índice 'E' del estado ambiental de los ríos. Tecnología del Agua 144: 85-97.

    Google Scholar 

  • Dohet, A., 2002. Are caddisflies an ideal group for the biological assessment of water quality in streams?. Proc. 10th Int. Symp. Trichoptera: 507-520.

  • Groenendijk, D., L. W. M. Zeinstra & J. F. Postma, 1998. Fluctuating asymmetry and mentum gaps in population of the midge Chironomus riparius (Diptera: Chironomidae) from a metalcontaminated river. Envir. Toxicol. Chem. 17: 1999-2005.

    Google Scholar 

  • Hardersen S., S. D. Wratten & C. M. Frampton, 1999. Does carbaryl increase fluctuating asymmetry in damselflies under field conditions? A mesocosm experiment with Xanthocnemis zealandica (Odonata: Zygoptera). J. appl. Ecol. 36: 534-543.

    Google Scholar 

  • Harper, D. M., J. L. Kemp, B. Vogel' & M. D. Newson, 2000. Towards the assessment of 'ecological integrity' in running waters of the United Kingdom. Hydrobiologia 422/423: 133-142.

    Google Scholar 

  • Harvey, I. F. & K. J. Walsh, 1993. Fluctuating asymmetry and lifetime mating success are correlated in males of the damsel-fly Coenagrion puella (Odonata: Coenagrionidae). Ecol. Ent. 18: 198-202.

    Google Scholar 

  • Hellawell, J. M., 1986. Biological Indicators of Freshwater Pollution and Environmental Management. Applied Sciences Publishers, London.

    Google Scholar 

  • Hem, J. D., 1970. Study and interpretation of the chemical characteristics of natual water (2nd edn). Geological Survey Water-Supply Paper 1473, U.S. Dept. of Interior, U.S. Government Printing Office, Washington.

    Google Scholar 

  • Hunt M. K., C. S. Crean, R. J. Wood & A. S. Gilburn, 1998. Fluctuating asymmetry and sexual selection in the Mediterranean fruitfly (Diptera, Tephritidae). Biol. J. linn. Soc. 64: 385-396.

    Google Scholar 

  • Hutchinson D.W. & J. M. Cheverud, 1995. Fluctuating Asymmetry in Tamarin (Sanguinus) cranial morphology: intra-and interspecific comparison between taxe with varying levels of genetic heterozygosity. J. Hered. 86: 280-288.

    Google Scholar 

  • Hynes H. B. N., 1960. The Biology of Polluted Waters. Liverpool Univ. Press, Liverpool.

    Google Scholar 

  • Jennions M. D., 1996. The allometry of fluctuating asymmetry in southern African plants: flowers and leaves. Biol. J. linn. Soc. 59: 127-142.

    Google Scholar 

  • Knoben R. A. E., C. Roos & M. C. M. Van Oirschot, 1995. Biological assessment methods for water-courses. UN/ECE Task Force on Monitoring & Assessment 3.

  • Leary R. F. & F. W. Allendorf, 1989. Fluctuating asymmetry as an indicator of stress: implications for conservation biology. Trends Ecol. Evol. 4: 214-217.

    Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier, Amsterdam: 853 pp.

    Google Scholar 

  • Leung B. & M. R. Forbes, 1997. Fluctuating asymmetry in relation to stress and fitness: effects of trait type as revealed by metaanalysis. Ecoscience 3: 400-413.

    Google Scholar 

  • Mackay R. J., 1984. Life history patterns of Hydropsyche bronta and H. Morosa (Trichoptera: Hydropsychidae) in summer-warm rivers of southern Ontario. Can. J. Zool. 62: 271-275.

    Google Scholar 

  • Markow T. A., 1995. Evolutionary ecology and developmental instability. Ann. Rev. Ent. 40: 105-120.

    Google Scholar 

  • Marneffe Y., S. Comblin, J. C. Bussers & J. P. Thomé, 1997. Biomonitoring of the water quality in the river Warche (Belgium): impact of tributaries and sewage effluent. Neth. J. Zool. 47: 111-124.

    Google Scholar 

  • Masteller E. C. & O. S. Jr. Flint, 1986. Trichoptera emergence patterns from a small stream in northwestern Pennsylvania influenced by sewage effluent. Proc. 4th Int. Symp. Trichoptera: 225-233.

  • Metcalfe J. L., 1989. Biological water quality assessment of running aters based on macroinvertebrates communities: history and present sttus in Europe. Contam. Toxicol. 28: 378-384.

    Google Scholar 

  • Milbrink G., 1983. Characteristic deformities in tubificid oligochaetes inhabiting polluted bays of Lake Vanern, southern Sweden. Hydrobiologia 106: 169-184.

    Google Scholar 

  • Norris, R. H. & A. Georges, 1993. Analysis and interpretation of benthic macroinvertebrate surveys. In Rosenberg, D. M. & V. H. Resh (eds), Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York: 234-286.

    Google Scholar 

  • Palmer A. R. & C. Strobeck, 1986. Fluctuating asymmetry: measurement, analysis, patterns. Annu. Rev. Ecol. Syst. 17: 391-421.

    Google Scholar 

  • Palmer A. R. & C. Strobeck, 1992. Fluctuating asymmetry as a measure of developmental stability: Implications of non-normal distributions and power of stadistical tests. Acta zool. fenn. 191: 57-72.

    Google Scholar 

  • Palmer A. R., 1994. Fluctuating asymmetry analyses: a primer. In Markow, A. (ed.), Developmental Instability: Its Origins and Evolutionary Implications. Kluwer Academic Publishers, Dordrecht: 335-364.

    Google Scholar 

  • Parsons P. A., 1990. Fluctuating asymmetry: an epigenetic measure of stress. Biol. Rev. 65: 131-145.

    Google Scholar 

  • Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross & R. M. Hughes, 1989. Rapid Bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. EPA/444/4-89-001. United Estates Environmental Protection Agency, Washington, D. C.

    Google Scholar 

  • Polak M. & R. Trivers, 1994. The science of symmetry in biology. Trends Ecol. Evol. 9: 122-124.

    Google Scholar 

  • Prat N., G. González & X. Millet, 1986. Comparación crítica de dos índices de calidad del agua: ISQA y BILL. Tecnología del Agua 31: 33-49.

    Google Scholar 

  • Prat, N., A. Munné, M. Rieradevall, C. Solà & N. Bonada, 2000. ECOSTRIMED: Protocol to establish the ecological status of Mediterranean rivers and streams. Diputació de Barcelona. Àrea de Medi Ambient (Estudis de la Qualitat Ecológica dels Rius, 8): 94 pp.

  • Rabitsch W. B., 1997. Levels of asymmetry in Formica pratensis Retz. (Hymenoptera, Insecta) from a chronic metalcontaminated site. Environ. Toxicol. Chem. 16: 1433-1440.

    Google Scholar 

  • Resh V. H., 1993. Recent trends in the use of Trichoptera in water quality monitoring. Proc. 7th Int. Symp. Trichoptera: 285-291.

  • Reynoldson T. B. & J. L. Metcalfe-Smith, 1992. An overview of the assessment of aquatic ecosystem health using benthic invertebrates. J. aquat. Ecos. Health 1: 295-308.

    Google Scholar 

  • Reynoldson T. B., 1984. The utility of benthic macroinvertebrates in water quality monitoring. Wat. Qual. Bull. 10: 21-28.

    Google Scholar 

  • Roback S. S., 1962. Environmental requirements of Trichoptera. In Tarzwell, C. M. (ed.), Third Seminar in Biological Problems in Water Pollution. No. 999-WP-25, U.S. Public Health Service, Cincinnati, Ohio: 118-126.

    Google Scholar 

  • Rutherford J. E., 1985. An illustrated key to the pupae of six species of Hydropsyche (Trichoptera: Hydropsychidae) common in southern Ontario streams. The Great Lakes Entomol. 18: 123-132.

    Google Scholar 

  • Schuster G. A. & D. A. Etnier, 1978. A manual for the identification of the larvae of the caddisfly genera Hydropsyche Pictet and Symphitopsyche Ulmer in eastern and central North America (Trichoptera: Hydropsychidae). U.S. Environmental Protection Agency: 11-43.

  • Servia, M. J., 2001. Causalidad, ontogenia y aplicación práctica en la detección del estrés ambiental de la asimetría fluctuante y las deformidades en larvas de Chironomus riparius mg. (Diptera: Chironomidae). PhD: 304 pp.

  • Stewart A. J., 1996. Ambient bioassays for assessing water-quality conditions in receiving streams. Ecotoxicology 5: 377-393.

    Google Scholar 

  • Townsend C. R., M. R. Scarsbrook & S. Dolédec, 1997. Quantifying disturbance in streams: alternative measures of disturbance in relation to macroinvertebrate species traits and species richness. J. N. Am. Benthol. Soc. 16: 531-544.

    Google Scholar 

  • Van Valen L., 1962. A study of fluctuating asymmetry. Int. J. Org. Evol. 16: 125-142.

    Google Scholar 

  • Waddington C. H., 1942. Canalization of development and the inheritance of acquired characters. Nature 150: 563-565.

    Google Scholar 

  • Wagner E. J., 1996. History and fluctuating asymmetry of Utah salmonid broodstocks. The Progressive Fish-Culturist 58: 92-103.

    Google Scholar 

  • Wallace J. B., J. W. Grubaugh & M. R. Whiles, 1996. Biotic indices and stream ecosystem processes: results from an experimental study. Ecol. Applic. 6: 140-151.

    Google Scholar 

  • Warwick, W. F., 1980. Paleolimnology of the bay of Quinte, Lake Ontario: 200 years of cultural influence. Can. Bull. Fish. aquat. Sci. 206.

  • Warwick, W. F., 1985. Morphological abnormalities in Chironomidae (Diptera) larvae as measures of toxic stress in freshwater ecosystems: indexing antennal deformities in Chironomus Meigen. Can J. Fish. aquat. Sci. 42: 1881-1914.

    Google Scholar 

  • Warwick W. F., 1990. Morphological deformities in Chironomidae (Diptera) larvae from the Lac St. Louis and Laprairie basins of the St. Lawrence River. J. Great Lakes Res. 16: 185-208.

    Google Scholar 

  • Wiggins G. B., 1977. Larvae of the North American caddisfly genera (Trichoptera). University of Toronto Press, Toronto.

    Google Scholar 

  • Williams, D. D., N. E. Williams & Y. Cao, 2000. Road salt contamination of groundwater in a major metropolitan area and development of a biological index to monitor its impact. Water Res. 34: 127-138.

    Google Scholar 

  • Williams, N. E. & D. D. Williams, 1996. Paleoecological reconstruction of natural and human influences on groundwater outflows. In Boon, P. J. & D. L. Howells (eds), Freshwater Quality: Defining the Indefinable? Scottissh Natural Heritage? H.M.S.O., London: 175-183.

    Google Scholar 

  • Zakharov V. M. & A. V. Yablokov, 1990. Skull asymmetry in the Baltic Grey Seal: effects of environmental pollution. Ambio 19: 266-269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonada, N., Williams, D.D. Exploration of the utility of fluctuating asymmetry as an indicator of river condition using larvae of the caddisfly Hydropsyche morosa (Trichoptera: Hydropsychidae). Hydrobiologia 481, 147–156 (2002). https://doi.org/10.1023/A:1021297503935

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021297503935

Navigation