Skip to main content
Log in

Inhibition of tumor progression and neoangiogenesis using cyclic RGD-peptides in a chemically induced colon carcinoma in rats

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Integrins are cell surface molecules that mediate cell adhesion, but are also important regulators of tumor cell interactions with their microenvironment, tumor cell survival and growth. In addition, the αvβ3-integrins appear to be critical for microvessel formation in tumor-induced neoangiogenesis. The present study is the first to investigate the effects of therapeutic αvβ3-integrin inhibition in a chemically induced tumor model that largely resembles human colon carcinomas. Tumor induction was performed in 47 male Sprague-Dawley rats using 1,2 dimethylhydrazin (21 mg/kg) twice a week. After 20 weeks of tumor induction, 100% of the animals developed adenocarcinomas with a median of 13.5 macroscopic tumor nodules (range 12–17), but no distant metastases. During further tumor induction for an additional 10 weeks, rats were treated three times/week with (a) 15 mg/kg RGDfV-peptide that can block vitronectin and fibronectin receptors; (b) an equimolar amount of an ineffective cyclic control peptide; or (c) with equimolar amounts of a linear RGDS-peptide. At the end of this treatment period, rats were sacrificed, and tumor load was quantified macroscopically and confirmed by histological examination. For investigation of the involvement of tumor-induced neoangiogenesis microvessel, density was determined using CD31-immunostaining. After 30 weeks, control animals (group B) had 5–18 tumors (median 14.5). If rats were treated with RGDfV-peptide (group A), the number of tumor nodules was significantly reduced (P < 0.005) to a median of seven macroscopic tumors (range 2–10 tumors), which also represented a significant reduction (P < 0.005) compared with prior to treatment. Application of noncylic RGDS-peptides (group C) did not affect the number of tumor nodules (median 18; range 10–30 tumors). The diameters of tumor nodules were comparable (3.2–6.1 mm) in animals of all groups. In addition, microvessel density was significantly (P < 0.05) reduced in tumors in group A compared to control rats. The major side effect in the treatment group was increased susceptibility to respiratory infections. Our results demonstrate that αvβ3-integrin-receptor inhibition appears to be a therapeutic strategy for colorectal cancer. In our therapeutic model, late onset of treatment with integrin-blocking peptides resulted in an inhibition of tumor growth and a reduced tumor load which appeared to be mediated, at least in part, by inhibition of neoangiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bossi P, Viale G, Lee AK et al. Angiogenesis in colorectal tumors: Microvessel quantitation in adenomas and carcinomas with clinicopathological correlations. Cancer Res 1995; 55: 5049–53.

    PubMed  CAS  Google Scholar 

  2. Lindmark G, Gerdin B, Sundberg C et al. Prognostic significance of the microvascular count in colorectal cancer. J Clin Oncol 1996; 14: 461–6.

    PubMed  CAS  Google Scholar 

  3. Folkman J, Klagsbrun M. Angiogenesis factors. Science 1987; 235: 442–7.

    PubMed  CAS  Google Scholar 

  4. Paweletz N, Knierim M. Tumor-related angiogenesis. Crit Rev Oncol Hematol 1989; 9: 197–242.

    PubMed  CAS  Google Scholar 

  5. Folkman J. Towards an understanding of angiogenesis: Search and discovery. Prospect. Biol Med 1985; 29: 453–64.

    Google Scholar 

  6. D'Amore PA. Antiangiogenesis as a strategy for antimetastasis. Semin. Thromb. Hemostasis 1988; 14: o73–8.

    Article  Google Scholar 

  7. Ingber DE. Extracellular matrix as a solid-state regulator in angiogenesis: Identification of new targets for anti-cancer therapy. Semin Cancer Biol 1992; 3: 57–63.

    PubMed  CAS  Google Scholar 

  8. Folkman J, Shing Y. Angiogenesis. J Biol Chem 1992; 267: 10931–4.

    PubMed  CAS  Google Scholar 

  9. Bauer J, Margolis M, Schreiner C et al. In vitro model of angiogenesis using a human endothelium-derived permanent cell line: Contributions of induced gene expression, G-proteins, and integrins. J Cell Physiol 1992; 153: 437–49.

    Article  PubMed  CAS  Google Scholar 

  10. Brooks PC. Role of integrins in angiogenesis. Eur J Cancer Res 1996; 32A: 2423–9.

    Article  CAS  Google Scholar 

  11. Christofidou-Solomidou MM, Murphy GF et al. Expression and function of endothelial cell alpha v integrin receptors in woundinduced human angiogenesis in human skin/SCID mice chimeras. J Am J Pathol 1997; 151: 975–83.

    CAS  Google Scholar 

  12. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994; 264: 569–71.

    PubMed  CAS  Google Scholar 

  13. Brooks PC, Montgomery AMP, Rosenfeld M et al. Integrin ?v?3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994; 79: 1157–64.

    Article  PubMed  CAS  Google Scholar 

  14. Max R, Gerritsen RR, Nooijen PT et al. Immunohistochemical analysis of integrin ?v?3 expression on tumor-associated vessels of human carcinomas. Int J Cancer 1997; 71: 320–4.

    Article  PubMed  CAS  Google Scholar 

  15. Sheu JR, Yen MH, Kan YC et al. Inhibition of angiogenesis in vitro and in vivo: Comparison of the relative activities of triflavin, an Arg-Gly-Asp-containing peptide and anti-alpha(v)beta3 integrin monoclonal antibody. Biochim Biophys Acta 1997; 1336: 445–54.

    PubMed  CAS  Google Scholar 

  16. Nicosia RF, Bonanno E, Smith M. Fibronectin promotes the elongation of microvessels during angiogenesis in vitro. J Cell Physiol 1993; 154: 654–61.

    Article  PubMed  CAS  Google Scholar 

  17. Nicosia RF, Bonanno E. Inhibition of angiogenesis in vitro by Arg-Gly-Asp-containing synthetic peptide. Am J Pathol 1991; 138: 829–33.

    PubMed  CAS  Google Scholar 

  18. Kerr JS, Wexler RS, Mousa SA et al. Novel small molecule alpha v integrin antagonists: Comparative anti-cancer efficacy with known angiogenesis inhibitors. Anticancer Res 1999; 19: 959–68.

    PubMed  CAS  Google Scholar 

  19. Brooks PC, Stromblad S, Klemke R et al. Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 1995; 96: 1815–22.

    PubMed  CAS  Google Scholar 

  20. Saiki I, Murata J, Makabe T et al. Inhibition of tumor angiogenesis by a synthetic cell-adhesive polypeptide containing the Arg-Gly-Asp (RGD) sequence of fibronectin, poly(RGD). Jpn J Cancer Res 1990; 81: 668–75.

    PubMed  CAS  Google Scholar 

  21. Lode HN, Moehler T, Xiang R et al. Synergy between an antiangiogenic integrin alpha v antagonist and an antibody-cytokine fusion protein eradicates spontaneous tumor metastases. Proc Natl Acad Sci USA 1999; 96: 1591–6.

    Article  PubMed  CAS  Google Scholar 

  22. Rubio CA, Nylander G, Wahlin B et al. Monitoring the histogenesis of colonic tumors in the Sprague-Dawley rat. J Surg Oncol 1986; 31: 225–8.

    PubMed  CAS  Google Scholar 

  23. Vinas-Salas J, Fortuny JC, Panades J et al. Appearance of ear tumors in Sprague-Dawley rats treated with 1,2-dimethylhydrazine when used as a model for colonic carcinogenesis. Carcinogenesis 1992; 13: 493–5.

    PubMed  CAS  Google Scholar 

  24. Nelson RL, Wilson W, Samelson SL et al. The interaction of retrovirus and chemical carcinogen in experimental colon carcinogenesis. Surgery 1987; 101: 172-5.

    PubMed  CAS  Google Scholar 

  25. Martin MS, Hammann A, Martin F. Gut-associated lymphoid tissue and 1,2-dimethylhydrazine intestinal tumors in the rat: An histological and immunoenzymatic study. Int J Cancer 1986; 38: 75–80.

    PubMed  CAS  Google Scholar 

  26. Haier J, Nasralla M, Nicolson GL. Different adhesion properties of highly and poorly metastatic HT-29 colon carcinoma cells with extracellular matrix components: Role of integrin expression and cytoskeletal components. Brit. J. Cancer 1999; 80: 1867–74.

    Article  PubMed  CAS  Google Scholar 

  27. Varner JA, Cheresh DA. Tumor angiogenesis and the role of vascular cell integrin alphavbeta3. Important Adv Oncol 1996: 69–87.

  28. Stromblad S, Becker JC, Yebra M et al. Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin alphaVbeta3 during angiogenesis. J Clin Invest 1996; 98: 426–33.

    PubMed  CAS  Google Scholar 

  29. Davis GE. Affinity of integrins for damaged extracellular matrix: ?v?3 binds to denatured collagen type-I through RGD sites. Biophys Res Commun 1992; 182: 1025–31.

    Article  CAS  Google Scholar 

  30. Takei A, Tashiro Y, Nakashima Y et al. Effects of fibrin on the angiogenesis in vitro of bovine endothelial cells in collagen gel. in vitro Cell Dev Biol Anim 1995; 31: 467–72.

    PubMed  CAS  Google Scholar 

  31. Pfaff M, Tangemann K, Muller B et al. Selective recognition of cyclic RGD peptides of NMR defined conformation by alpha IIb beta 3, alpha V beta 3, and alpha 5 beta 1 integrins. J Biol Chem 1994; 269: 20233–8.

    PubMed  CAS  Google Scholar 

  32. Dechantsreiter MA, Planker E, Matha B et al. N-Methylated cyclic RGD peptides as highly active and selective alpha(V)beta(3) integrin antagonists. J Med Chem 1999; 42: 3033–40.

    Article  PubMed  CAS  Google Scholar 

  33. Glauert HP, Bennink MR. Metabolism of 1,2-dimethylhydrazine by cultured rat colon epithelial cells. Nutr Cancer 1983; 5: 78–86.

    Article  PubMed  CAS  Google Scholar 

  34. Halline AG, Dudeja PK, Lashner BA et al. Urinary excretion of N1-acetylspermidine and other acetylated and free polyamines in the 1,2-dimethylhydrazine model of experimental rat colon cancer. Cancer Res 1989; 49: 4721–3.

    PubMed  CAS  Google Scholar 

  35. Oravec CT, Jones CA, Huberman E. Activation of the colon carcinogen 1,2-dimethylhydrazine in a rat colon cell-mediated mutagenesis assay. Cancer Res 1986; 46: 5068–71.

    PubMed  CAS  Google Scholar 

  36. Telang NT, Williams GM. Carcinogen-induced DNA damage and cellular alterations in F344 rat colon organ cultures. J Natl Cancer Inst 1982; 68: 1015–22.

    PubMed  CAS  Google Scholar 

  37. Inagake M, Yamane T, Kitao Y et al. Inhibition of 1,2-dimethylhydrazine-induced oxidative DNA damage by green tea extract in rat. Jpn J Cancer Res 1995; 86: 1106-11.

    PubMed  CAS  Google Scholar 

  38. Kitchin KT, Brown JL. Dose-response relationship for rat liver DNA damage caused by 1,2-dimethylhydrazine. Toxicology 1996; 114: 113–24.

    Article  PubMed  CAS  Google Scholar 

  39. Tacchi Bedford AM, Whyman GD, McLean AE. DNA alkylation by 1,2-dimethylhydrazine in the rat large intestine and liver: Influence of diet and enzyme induction. Toxicology 1988; 50: 181–91.

    Article  PubMed  CAS  Google Scholar 

  40. Rana RS, Stevens RH, Oberley L et al. Evidence for a defective mitochondrial membrane in 1,2-dimethylhydrazine-induced colon adenocarcinoma in rat: Enhanced lipid peroxidation potential in vitro. Cancer Lett 1980; 9: 237–44.

    Article  PubMed  CAS  Google Scholar 

  41. Stevens RH, Loven DP, Osborne JW et al. Cyclic nucleotide concentrations in 1,2-dimethylhydrazine induced rat colon adenocarcinoma. Cancer Lett 1978; 4: 27–33.

    Article  PubMed  CAS  Google Scholar 

  42. Stevens RH, Loven DP. Intracellular adenosine and guanosine 3_,5_-cyclic monophosphate concentrations in rat small and large bowel following single and multiple exposures to 1,2-dimethylhydrazine. Cancer Lett 1980; 9: 151–9.

    Article  PubMed  CAS  Google Scholar 

  43. Zhurkov VS, Sycheva LP, Salamatova O et al. Selective induction of micronuclei in the rat/mouse colon and liver by 1,2-dimethylhydrazine: A seven-tissue comparative study. Mutat Res 1996; 368: 115–20.

    Article  PubMed  CAS  Google Scholar 

  44. Goldin BR, Gorbach SL. Effect of antibiotics on incidence of rat intestinal tumors induced by 1,2-dimethylhydrazine dihydrochloride. J Natl Cancer Inst 1981; 67: 877–80.

    PubMed  CAS  Google Scholar 

  45. Gallaher DD, Stallings WH, Blessing LL et al. Probiotics, cecal microflora, and aberrant crypts in the rat colon. J Nutr 1996; 126: 1362–71.

    PubMed  CAS  Google Scholar 

  46. Thurnherr N, Reinhart K. Induction of colonic carcinoma in mice using 1,2-dimethylhydrazine hydrochloride. Schweiz Med Wochenschr 1975; 105: 585–6.

    PubMed  CAS  Google Scholar 

  47. Filipe MI. Mucous secretion in rat colonic mucosa during carcinogenesis induced by dimethylhydrazine. A morphological and histochemical study. Br J Cancer 1975; 32: 60–77.

    PubMed  CAS  Google Scholar 

  48. Rose RC, Nahrwold DL. Bile acids: effects on absorption of 1,2-dimethylhydrazine and 7,12-dimethylbenz[a]anthracene in the colon of the rat and guinea pig. J Natl Cancer Inst 1982; 68: 619–22.

    PubMed  CAS  Google Scholar 

  49. Bara J, Decaens C, Burtin P. Early precancerous modifications in the mucus of human and rat distal colon: A comparative immunohistologic study. Ann NY Acad Sci 1983; 417: 182–94.

    PubMed  CAS  Google Scholar 

  50. Takemiya M, Miyayama H, Takeuchi T. Pathogenesis of 1,2-dimethylhydrazine-induced carcinomas in rat intestine. II. Histochemical and ultrastructural characteristics of glycoproteins of 1,2-dimethylhydrazine-induced carcinoma cells. Acta Pathol Jpn 1982; 32: 265–79.

    PubMed  CAS  Google Scholar 

  51. Yasui W, Sumiyoshi H, Yamamoto T et al. Expression of Ha-ras oncogene product in rat gastrointestinal carcinomas induced by chemical carcinogens. Acta Pathol Jpn 1987; 37: 1731–41.

    PubMed  CAS  Google Scholar 

  52. Jacoby RF, Llor X, Teng BB et al. Mutations in the K-ras oncogene induced by 1,2-dimethylhydrazine in preneoplastic and neoplastic rat colonic mucosa. J Clin Invest 1991; 87: 624–30.

    Article  PubMed  CAS  Google Scholar 

  53. Yamada K, Yoshitake K, Sato M et al. Proliferating cell nuclear antigen expression in normal, preneoplastic, and neoplastic colonic epithelium of the rat. Gastroenterology 1992; 103: 160–7.

    PubMed  CAS  Google Scholar 

  54. Licato LL, Keku TO, Wurzelmann JI et al. in vivo activation of mitogen-activated protein kinases in rat intestinal neoplasia. Gastroenterology 1997; 113: 1589–98.

    Article  PubMed  CAS  Google Scholar 

  55. Sano T, Remvikos Y, Vielh P et al. DNA ploidy in 1,2-dimethylhydrazine-induced rat tumors. Jpn J Cancer Res 1988; 79: 580–3.

    PubMed  CAS  Google Scholar 

  56. Shetye JD, Rubio CA, Harmenberg U et al. Tumor-associated antigens common to humans and chemically induced colonic tumors of the rat. Cancer Res 1990; 50: 6358–63.

    PubMed  CAS  Google Scholar 

  57. Lindstrom CG, Rosengren JE, Ekberg O. Experimental colonic tumours in the rat. III. Induction time, distribution and appearance of induced tumours. Acta Radiol Diagn (Stockh) 1978; 19: 799–816.

    CAS  Google Scholar 

  58. Decaens C, Gautier R, Daher N et al. Induction of rat intestinal carcinogenesis with single doses, low and high repeated doses of 1,2-dimethylhydrazine. Carcinogenesis 1989; 10: 69–72.

    PubMed  CAS  Google Scholar 

  59. McLellan EA, Medline A, Bird RP. Dose response and proliferative characteristics of aberrant crypt foci: Putative preneoplastic lesions in rat colon. Carcinogenesis 1991; 12: 2093–8.

    PubMed  CAS  Google Scholar 

  60. Deasy JM, Steele G, Ross DS et al. Gut-associated lymphoid tissue and dimethylhydrazine-induced colorectal carcinoma in the Wistar/ Furth rat. J Surg Oncol 1983; 24: 36–44.

    PubMed  CAS  Google Scholar 

  61. Salim AS. Removing oxygen-derived free radicals delays hepatic metastases and prolongs survival in colonic cancer. A study in the rat. Oncology 1992; 49: 58–62.

    Article  PubMed  CAS  Google Scholar 

  62. Maley MA, House AK. The immune status of the rat with carcinoma of the bowel. Br J Exp Pathol 1983; 64: 245–51.

    PubMed  CAS  Google Scholar 

  63. Martin MS, Hammann A, Martin F. Gut-associated lymphoid tissue and 1,2-dimethylhydrazine intestinal tumors in the rat: An histological and immunoenzymatic study. Int J Cancer 1986; 38: 75–80.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haier, J., Goldmann, U., Hotz, B. et al. Inhibition of tumor progression and neoangiogenesis using cyclic RGD-peptides in a chemically induced colon carcinoma in rats. Clin Exp Metastasis 19, 665–672 (2002). https://doi.org/10.1023/A:1021316531912

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021316531912

Navigation