Skip to main content
Log in

Numerical Study of a Free-Burning Argon Arc with Copper Contamination from the Anode

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The present modeling of a free-burning argon arc accounts for copper vapor contamination from the anode. Simulations are made for an atmospheric arc that has a length of 10 mm and an electric current of 200 amps. Predicted results for two different anode evaporation rates are compared to those from a pure argon arc with no copper vapor contamination. Copper vapor concentration, temperature, electric potential, and current density profiles are presented. Included in this analysis are radiation losses from both the argon and copper by using recently calculated net emission coefficients. It was found that evaporation of copper from the anode results in a cooling of the arc in a region close to the anode, but has an insignificant influence on the arc close to the cathode. Due to the arc flow characteristics most of the copper vapor tends to be confined to the anode region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Etemadi and E. Pfender, Plasma Chem. Plasma Process. 5, 175 (1985).

    Google Scholar 

  2. B. Cheminat and P. Andanson, J. Phys. D: Appl. Phys. 18, 2183 (1985).

    Google Scholar 

  3. A. Farmer, G. Haddad, and L. Cram, J. Phys. D: Appl. Phys. 19, 1723 (1986).

    Google Scholar 

  4. M. Razafinimanana, L. El Hamidi, A. Gleizes, and S. Vacquie, Plasma Sources Sci. Technol. 4, 501 (1995).

    Google Scholar 

  5. J. Gonzalez, M. Bouaziz, M. Razafinimanana, and A. Gleizes, Plasma Sources Sci. Technol. 6, 20 (1997).

    Google Scholar 

  6. A. Gleizes, M. Bouaziz, J. Gonzalez, and M. Razafinimanana, IEEE Trans. Plasma Sci. 24, 891 (1997).

    Google Scholar 

  7. G. Y. Zhao, M. Dassanayake, and K. Etemadi, Plasma Chem. Plasma Process. 10, 87 (1990).

    Google Scholar 

  8. J. J. Gonzalez, A. Gleizes, P. Proulx, and M. Boulos, J. Appl. Phys. 74, 3065 (1992).

    Google Scholar 

  9. D. Evans and R. Tankin, Phys. Fluids 10, 1137 (1967).

    Google Scholar 

  10. J. Menart, J. Heberlein, and E. Pfender, Plasma Chem. Plasma Process. 16, 245 (1996) (Suppl.).

    Google Scholar 

  11. J. J. Lowke, P. Kovitya, and H. P. Schmidt, J. Phys. D: Appl. Phys. 25, 1600 (1992).

    Google Scholar 

  12. J. Menart and L. Lin, J. Thermophys. Heat Transfer, 12, 500 (1998).

    Google Scholar 

  13. C. R. Wilke, J. Chem. Phys. 14, 517 (1950).

    Google Scholar 

  14. J. Menart, Ph.D. Dissertation, University of Minnesota, Minneapolis, MN (1996).

  15. Y. Chyou, Ph.D. Dissertation, University of Minnesota, Minneapolis, MN (1984).

  16. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York (1980).

    Google Scholar 

  17. X. Zhou, D. Berns, and J. Heberlein, 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., Indianapolis, IN (1994).

  18. K. C. Hsu, K. Etemadi, and E. Pfender, J. Appl. Phys. 54, 1293 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menart, J., Lin, L. Numerical Study of a Free-Burning Argon Arc with Copper Contamination from the Anode. Plasma Chemistry and Plasma Processing 19, 153–170 (1999). https://doi.org/10.1023/A:1021635507382

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021635507382

Navigation