Skip to main content
Log in

Value-Estimation Function Method for Constrained Global Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A novel value-estimation function method for global optimization problems with inequality constraints is proposed in this paper. The value-estimation function formulation is an auxiliary unconstrained optimization problem with a univariate parameter that represents an estimated optimal value of the objective function of the original optimization problem. A solution is optimal to the original problem if and only if it is also optimal to the auxiliary unconstrained optimization with the parameter set at the optimal objective value of the original problem, which turns out to be the unique root of a basic value-estimation function. A logarithmic-exponential value-estimation function formulation is further developed to acquire computational tractability and efficiency. The optimal objective value of the original problem as well as the optimal solution are sought iteratively by applying either a generalized Newton method or a bisection method to the logarithmic-exponential value-estimation function formulation. The convergence properties of the solution algorithms guarantee the identification of an approximate optimal solution of the original problem, up to any predetermined degree of accuracy, within a finite number of iterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hestenes, M. R., Multiplier and Gradient Methods, Journal of Optimization Theory and Applications, Vol. 4, pp. 303–320, 1969.

    Google Scholar 

  2. Rockafellar, R. T., The Multiplier Method of Hestenes and Powell Applied to Convex Programming, Journal of Optimization Theory and Applications, Vol. 12, pp. 555–562, 1973.

    Google Scholar 

  3. Bertsekas, D. P., Multiplier Methods: A Survey, Automatica, Vol. 12, pp. 133–145, 1976.

    Google Scholar 

  4. Fiacco, A. V., and McCormick, G. P., Nonlinear Programming: Sequential Unconstrained Minimization Techniques, SIAM, Philadelphia, Pennsylvania, 1990.

    Google Scholar 

  5. Gill, P. E., Murray, W., and Wright, M. H., Practical Optimization, Academic Press, London, England, 1981.

    Google Scholar 

  6. Li, D., Zero Duality Gap for a Class of Nonconvex Optimization Problems, Journal of Optimization Theory and Applications, Vol. 85, pp. 309–324, 1995.

    Google Scholar 

  7. Goh, C. J., and Yang, X. O., A Sufficient and Necessary Condition for Nonconvex Constrained Optimization, Applied Mathematical Letters, Vol. 10, pp. 9–12, 1997.

    Google Scholar 

  8. Aubin, J. P., and Ekeland, I., Applied Nonlinear Analysis, John Wiley and Sons, New York, New York, 1984.

    Google Scholar 

  9. Lemarechal, C., An Extension of Davidon Methods to Nondifferentiable Problems, Nondifferentiable Optimization, Edited by M. L. Balinski and P. Wolfe, Mathematical Programming Study 3, North-Holland, Amsterdam, Holland, pp. 95–109, 1975.

    Google Scholar 

  10. Ratschek, H., and Rokne, J., New Computer Methods for Global Optimization, Ellis Horwood, Chichester, England, 1988.

    Google Scholar 

  11. Chen, C. H., and Mangasarian, O. L., Smoothing Methods for Convex Inequalities and Linear Complementarity Problems, Mathematical Programming, Vol. 71, pp. 51–69, 1995.

    Google Scholar 

  12. Li, X. S., Maximum entropy method in nonlinear minimax problems, Computational Structural Mechanics and Applications, Vol. 8, pp. 85–91, 1991.

    Google Scholar 

  13. Tang, H. W., and Zhang, L. W., Maximum entropy method in convex programming, Chinese Science Bulletin, Vol. 39, pp. 682–684, 1994.

    Google Scholar 

  14. Dixon, L. C. W., and Szego, G. P., Editors, Towards Global Optimization 2, North-Holland, Amsterdam, Holland, 1978.

    Google Scholar 

  15. Rinnoy Kan, A. H. G., and Timmer, G. T., Global Optimization, Handbook of Operations Research and Management Science 1, Optimization, Edited by G. L. Nemhauser, A. H. G. Rinnoy Kan, and M. J. Todd, North-Holland, Amsterdam, Holland, pp. 631–662, 1989.

    Google Scholar 

  16. Clarke, F. H., Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, New York, 1983.

    Google Scholar 

  17. Rinnoy, Kan, A. H. G., and Timmer, G. T., Stochastic Global Optimization Methods, Part 2: Multilevel Methods, Mathematical Programming, Vol. 39, pp. 57–78, 1987.

    Google Scholar 

  18. Branch, M. A., and Grace, A., MATLAB Optimization Toolbox: User's Guide, MathWorks, Natick, Massachusetts, 1996.

    Google Scholar 

  19. Hock, W., and Schittkowski, K., Test Examples for Nonlinear Programming Codes, Springer Verlag, Berlin, Germany, 1981.

    Google Scholar 

  20. Horst, R., Pardalos, P. M., and Thoai, N. V., Introduction to Global Optimization, Kluwer Academic Publishers, Dordrecht, Holland, 1995.

    Google Scholar 

  21. Levy, A. V., and Montalvo, A., The Tunneling Algorithm for the Global Minimization of Functions, SIAM Journal on Scientific and Statistical Computing, Vol. 6, pp. 15–27, 1985.

    Google Scholar 

  22. Cetin, B. C., Barhen, J., and Burdick, J. W., Terminal Repeller Unconstrained Subenergy Tunneling (Trust) for Fast Global Optimization, Journal of Optimization Theory and Applications, Vol. 77, pp. 97–126, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X.L., Li, D. Value-Estimation Function Method for Constrained Global Optimization. Journal of Optimization Theory and Applications 102, 385–409 (1999). https://doi.org/10.1023/A:1021736608968

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021736608968

Navigation