Skip to main content
Log in

Computer Simulations of Polymers Close to Solid Interfaces: Some Selected Topics

  • Published:
Interface Science

Abstract

This paper presents a topical overview of molecular-dynamics and Monte Carlo simulations for polymer systems close to solid interfaces. The simulations utilize simplified coarse-grained models: The polymers are represented by bead-spring chains, and the walls by a crystalline layer of Lennard-Jones particles or by a smooth impenetrable barrier. This approach has two advantages. First, it reduces the complexity of the simulation. Often, it is only then possible that the interesting length and time scales can be studied at all. Second, the approach concentrates on generic features that are believed to determine the physics of the problem under consideration. The results of the simulation can thus help to single out those features which should be incorporated in an analytical treatment. In this paper, we want to illustrate the versatility of these models by applying them to a broad spectrum of different problems. The situations considered range from the adsorption of a polymer from dilute solution onto a wall, over the importance of sub-monolayer monomeric or polymeric lubricants for kinetic friction, to the crystallization or glass transition of dense polymer films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Garbassi, M. Morra, and E. Occhiello, Polymer Surfaces: From Physics to Technology (Wiley, Chichester, 2000).

    Google Scholar 

  2. G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, T. Cosgrove, and B. Vincent, Polymers at Interfaces (Chapman & Hall, London, 1993).

    Google Scholar 

  3. A. Karim and S. Kumar (eds.), Polymer Surfaces, Interfaces and Thin Films (World Scientific, Singapore, 2000).

    Google Scholar 

  4. R.A.L. Jones and R.W. Richards, Polymers at Surfaces and Interfaces (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  5. A.N. Semenov, J.-F. Joanny, and A. Johner, in Theoretical and Mathematical Models in Polymer Research, edited by A. Grosberg (Academic Press, San Diego, 1998), pp. 37-81.

    Google Scholar 

  6. D.Y. Yoon, M. Vacatello, and G.D. Smith, in Monte Carlo and Molecular Dynamics Simulations in Polymer Science, edited by K. Binder (Oxford University Press, New York, 1995), pp. 433- 475.

    Google Scholar 

  7. H.H. Schneider, P. Frantz, and S. Granick, Langmuir 12, 1996 (dy1996), and references therein.

  8. M. M¨uller, J. Chem. Phys. 116, 9930 (2002).

    Google Scholar 

  9. R.L. Jones, S.K. Kumar, D. Ho, R.M. Briber, and T.P. Russell, Macromolecules 34, 559 (2001).

    Google Scholar 

  10. G. Reiter and J.A. Forrest (eds.), Special Issue on Properties of Thin Polymer Films (Eur. Phys. J. E 8, 2002).

  11. J.A. Forrest and K. Dalnoki-Veress, Adv. Coll. Interf. Sci. 94, 167 (2001).

    Google Scholar 

  12. G. Galli and M. Pasquarello, in Computer Simulation in Chemical Physics, edited by M.P. Allen and D.J. Tildesley (Kluwer, Dordrecht, 1993), pp. 261-313.

  13. G.D. Smith, W. Paul, M. Monkenbusch, and D. Richter, Chem. Phys. 261, 61 (2000).

    Google Scholar 

  14. K. Binder, in Monte Carlo and Molecular Dynamics Simulations in Polymer Science, edited by K. Binder (Oxford University Press, New York, 1995), pp. 3-46.

    Google Scholar 

  15. J. Baschnagel, K. Binder, P. Doruker, A.A. Gusev, O. Hahn, K. Kremer, W.L. Mattice, F. Müller-Plathe, M. Murat, W. Paul et al., Adv. Poly. Sci. 152, 41 (2000).

    Google Scholar 

  16. D. Reith, H. Meyer, and F. Müller-Plathe, Macromolecules 34, 2335 (2001).

    Google Scholar 

  17. J.P. Hansen and I.R. McDonald, Theory of Simple Liquids (Academic Press, London, 1986).

    Google Scholar 

  18. H. Meyer, O. Biermann, R. Faller, D. Reith, and F. Müller-Plathe, J. Chem. Phys. 113, 6264 (2000).

    Google Scholar 

  19. H. Meyer and F. Müller-Plathe, J. Chem. Phys. 115, 7807 (2001).

    Google Scholar 

  20. H. Meyer and F. Müller-Plathe, Macromolecules 35, 1241 (2002).

    Google Scholar 

  21. C. Bennemann, W. Paul, K. Binder, and B. Dünweg, Phys. Rev. E 57, 843 (1998).

    Google Scholar 

  22. K. Kremer and G.S. Grest, J. Chem. Phys. 92, 5057 (1990).

    Google Scholar 

  23. J. Buchholz, W. Paul, F. Varnik, and K. Binder, J. Chem. Phys. 117, 7364 (2002).

    Google Scholar 

  24. F. Varnik, J. Baschnagel, and K. Binder, Phys. Rev. E 65, 021507 (2002).

    Google Scholar 

  25. F. Varnik, J. Baschnagel, and K. Binder, Eur. Phys. J. E 8, 175 (2002).

    Google Scholar 

  26. M. Müller and L. Gonzalez-MacDowell, Macromolecules 33, 1194 (2000).

    Google Scholar 

  27. A. Patrykiejew, S. Sokolowski, and K. Binder, Surf. Sci. Rep. 37, 207 (2000).

    Google Scholar 

  28. M.O. Robbins and M.H. Müser, in Modern Tribology Handbook, edited by B. Bhushan (CRC Press, New York, 2001), pp. 717- 765.

    Google Scholar 

  29. F. Varnik and K. Binder, J. Chem. Phys. 117, 6336 (2002).

    Google Scholar 

  30. P.A. Thompson and M.O. Robbins, Phys. Rev. A 41, 6830 (1990).

    Google Scholar 

  31. W.A. Steele, Surf. Sci. 36, 317 (1973).

    Google Scholar 

  32. K. Binder, J. Baschnagel, and W. Paul, Progr. Poly. Sci. 28, 115 (2003).

    Google Scholar 

  33. H. Meyer, in Polymer Crystallization: Observations, Concepts and Interpretations, edited by J.-U. Sommer and G. Reiter (Springer, Berlin, 2002), in press.

    Google Scholar 

  34. E. Eisenriegler, Polymers Near Surfaces (World Scientific, Singapore, 1993).

    Google Scholar 

  35. E. Eisenriegler, K. Kremer, and K. Binder, J. Chem. Phys. 77, 6296 (1982).

    Google Scholar 

  36. W. Humphrey, A. Dalke, and K. Schulten, J. Molec. Graphics 14, 33 (1996).

    Google Scholar 

  37. H.W. Diehl and M. Shpot, Nucl. Phys. B 528, 595 (1998).

    Google Scholar 

  38. R. Hegger and P. Grassberger, J. Chem. Phys. 88, 4507 (1994).

    Google Scholar 

  39. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, San Diego, 1996).

    Google Scholar 

  40. D.P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  41. A. Milchev and K. Binder, Macromolecules 29, 343 (1996).

    Google Scholar 

  42. P.G. de Gennes, Macromolecules 14, 1637 (1981).

    Google Scholar 

  43. S. Metzger, M. Müller, J. Baschnagel, and K. Binder, Macromol. Theory Simul. 11, 985 (2002).

    Google Scholar 

  44. B.N.J. Persson, Sliding Friction (Springer, Berlin, 2000).

    Google Scholar 

  45. F.P. Bowden and D. Tabor, TheFriction and Lubrication of Solids (Oxford University Press, Oxford, 1958).

    Google Scholar 

  46. M.H. Müser, M. Urbakh, and M.O. Robbins, Adv. Chem. Phys., submitted.

  47. M.H. Müser, Tribol. Lett. 10, 15 (2001).

    Google Scholar 

  48. G. He, M.H. Müser, and M.O. Robbins, Sciences 284, 1650 (1999).

    Google Scholar 

  49. M.H. Müser, L. Wenning, and M.O. Robbins, Phys. Rev. Lett. 86, 1295 (2001).

    Google Scholar 

  50. M. Aichele and M.H. Müser, Instabilities and Kinetic Friction in Lubricated Systems (in preparation).

  51. E. Rössler and H. Sillescu, in Materials Science and Technology, edited by J. Zarzycki (VCH, Weinheim, 1991), vol. 9, pp. 574- 618.

    Google Scholar 

  52. K. Ngai (ed.), 4th International Discussion Meeting on Relaxations in Complex Systems (J. Non-Cryst. Solids 307-310, 2002).

  53. G. Strobl, The Physics of Polymers, 2nd ed. (Springer, 1997), ch. 4.

  54. K.A. Armistead and G. Goldbeck-Wood, Adv. Polym. Sci. 100, 221 (1992).

    Google Scholar 

  55. M. Muthukumar, Eur. Phys. J. E 3, 199 (2000).

    Google Scholar 

  56. G. Strobl,Eur. Phys. J. E 3, 165 (2000).

    Google Scholar 

  57. B. Lotz, Eur. Phys. J. E 3, 185 (2000).

    Google Scholar 

  58. W. Götze, J. Phys.: Condens. Matter 11, A1 (1999).

    Google Scholar 

  59. S.-H. Chong and M. Fuchs, Phys. Rev. Lett. 88, 185702 (2002).

    Google Scholar 

  60. M. Müller, K. Binder, and E.V. Albano, Int. J. Mod. Phys. C 15, 1867 (2001).

    Google Scholar 

  61. I. Slzeifer and M.A. Carignano, Adv. Chem. Phys. 94, 165 (1996).

    Google Scholar 

  62. G.S. Grest, Adv. Poly. Sci. 138, 149 (1999).

    Google Scholar 

  63. T. Kreer, M.H. Müser, K. Binder, and J. Klein, Langmuir 17, 7804 (2001).

    Google Scholar 

  64. D.H. Napper, Polymeric Stabilization of Colloidal Dispersions (Academic Press, London, 1983).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baschnagel, J., Meyer, H., Varnik, F. et al. Computer Simulations of Polymers Close to Solid Interfaces: Some Selected Topics. Interface Science 11, 159–173 (2003). https://doi.org/10.1023/A:1022118610890

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022118610890

Navigation