Skip to main content
Log in

Thermal analysis, state transitions and food quality

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal properties of food systems are important in understanding relationships between food properties and changes in food quality. Concentrated food systems (low-moisture and frozen foods) are seldom in an equilibrium state and they tend to form amorphous, non-crystalline structures. Several glass transition-related changes in such foods affect stability, e.g., stickiness and caking of powders, crispness of snack foods and breakfast cereals, crystallisation of amorphous sugars, recrystallisation of gelatinised starch, ice formation and recrystallisation in frozen foods and rates of non-enzymatic browning and enzymatic reactions. Relationships between glass transition, water plasticisation and relaxation times can be shown in state diagrams. State diagrams are useful as stability or quality maps and in the control of rates of changes in food processing and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Slade and H. Levine, Crit. Rev. Food Sci. Nutr., 30 (1991) 115.

    Google Scholar 

  2. L. Slade and H. Levine, Adv. Food Nutr. Res., 38 (1995) 103.

    Google Scholar 

  3. Y. H. Roos, Phase Transitions in Foods, Academic Press, San Diego, CA. 1995, p. 360.

    Google Scholar 

  4. M. T. Kalichevsky, E. M. Jaroszkiewicz, S. Ablett, J. M. V. Blanshard and P. J. Lillford, Carbohydr. Polym., 18 (1992) 77.

    Google Scholar 

  5. T. R. Noel, R. Parker and S. G. Ring, Carbohydr. Res., 282 (1996) 193.

    Google Scholar 

  6. G. K. Moates, T. R. Noel, R. Parker and S. G. Ring, Carbohydr. Polym., 44 (2001) 247.

    Google Scholar 

  7. R. A. Talja and Y. H. Roos, Thermochim. Acta, 380 (2001) 109.

    Google Scholar 

  8. T. J. Laaksonen, T. Kuuva, K. Jouppila and Y. H. Roos, J. Food Sci., 67 (2002) 223.

    Google Scholar 

  9. L. H. Sperling, 'Introduction to Physical Polymer Science', John Wiley & Sons, Inc., New York 1986, p. 439.

    Google Scholar 

  10. Y. H. Roos, M. Karel and J. L. Kokini, Food Technol., 50 (1996) 95.

    Google Scholar 

  11. L. N. Bell, Food Res. Int., 28 (1996) 591.

    Google Scholar 

  12. L. N. Bell, D. E. Touma, K. L. White and Y.-H. Chen, J. Food Sci., 63 (1998) 625.

    Google Scholar 

  13. D. Champion, M. Le Meste and D. Simatos, Trends Food Sci. Technol., 11 (2000) 41.

    Google Scholar 

  14. K. Kouassi and Y. H. Roos, J. Agric. Food Chem., 48 (2000) 2461.

    Google Scholar 

  15. G. W. White and S. H. Cakebread, J. Food Technol., 1 (1966) 73.

    Google Scholar 

  16. F. Sauvageot and G. Blond, J. Texture Stud., 22 (1991) 423.

    Google Scholar 

  17. Y. Shimada, Y. Roos and M. Karel, J. Agric. Food Chem., 39 (1991) 637.

    Google Scholar 

  18. H. D. Goff, Pure Appl. Chem., 67 (1995) 1801.

    Google Scholar 

  19. R. W. Hartel, Crystallization in Foods. Aspen Publishers, Gaithersburg 2001, p. 325.

    Google Scholar 

  20. Y. Roos and M. Karel, Int. J. Food Sci. Technol., 26 (1991) 553.

    Google Scholar 

  21. R. D. Ludescher, N. K. Shah, C. P. McCaul and K. V. Simon, Food Hydrocolloids, 15 (2001) 331.

    Google Scholar 

  22. M. T. Kalichevsky and J. M. V. Blanshard, Carbohydr. Polym., 20 (1993) 107.

    Google Scholar 

  23. S. M. Lievonen, T. J. Laaksonen and Y. H. Roos, J. Agric. Food Chem., 46 (1998) 2778.

    Google Scholar 

  24. Y. H. Roos, Carbohydr. Res., 238 (1993) 39.

    Google Scholar 

  25. R. C. Hoseney, K. Zeleznak and C. S. Lai, Cereal Chem., 63 (1986) 285.

    Google Scholar 

  26. K. J. Zeleznak and R. C. Hoseney, Cereal Chem., 64 (1987) 121.

    Google Scholar 

  27. M. T. Kalichevsky, J. M. V. Blanshard and P. F. Tokarczuk, Int. J. Food Sci. Technol., 28 (1993) 139.

    Google Scholar 

  28. M. Gordon and J. S. Taylor, J. Appl. Chem., 2 (1952) 493.

    Google Scholar 

  29. M. Peleg, Rheol. Acta, 32 (1993) 575.

    Google Scholar 

  30. K. L. White and L. N. Bell, J. Food Sci., 64 (1999) 1010.

    Google Scholar 

  31. B. Makower and W. B. Dye, J. Agric. Food Chem., 4 (1956) 72.

    Google Scholar 

  32. C. G. Biliaderis, C. M. Page, T. J. Maurice and B. O. Juliano, J. Agric. Food Chem., 34 (1986) 6.

    Google Scholar 

  33. Y. Roos and M. Karel, J. Food Sci., 57 (1992) 775.

    Google Scholar 

  34. K. Jouppila and Y. H. Roos, J. Dairy Sci., 77 (1994) 2907.

    Google Scholar 

  35. M. E. Sahagian and H. D. Goff, Food Res. Intl., 28 (1995) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Roos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roos, Y.H. Thermal analysis, state transitions and food quality. Journal of Thermal Analysis and Calorimetry 71, 197–203 (2003). https://doi.org/10.1023/A:1022234805054

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022234805054

Navigation