Skip to main content
Log in

On Locating Clusters of Zeros of Analytic Functions

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Given an analytic function f and a Jordan curve γ that does not pass through any zero of f, we consider the problem of computing all the zeros of f that lie inside γ, together with their respective multiplicities. Our principal means of obtaining information about the location of these zeros is a certain symmetric bilinear form that can be evaluated via numerical integration along γ. If f has one or several clusters of zeros, then the mapping from the ordinary moments associated with this form to the zeros and their respective multiplicities is very ill-conditioned. We present numerical methods to calculate the centre of a cluster and its weight, i.e., the arithmetic mean of the zeros that form a certain cluster and the total number of zeros in this cluster, respectively. Our approach relies on formal orthogonal polynomials and rational interpolation at roots of unity. Numerical examples illustrate the effectiveness of our techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. G. Anastasselou, A formal comparison of the Delves-Lyness and Burniston-Siewert methods for locating the zeros of analytic functions, IMA J. Numer. Anal., 6 (1986), pp. 337–341.

    Google Scholar 

  2. E. G. Anastasselou and N. I. Ioakimidis, Application of the Cauchy theorem to the location of zeros of sectionally analytic functions, J. Appl. Math. Phys., 35 (1984), pp. 705–711.

    Google Scholar 

  3. E. G. Anastasselou and N. I. Ioakimidis, A generalization of the Siewert-Burniston method for the determination of zeros of analytic functions, J. Math. Phys., 25 (1984), pp. 2422–2425.

    Google Scholar 

  4. E. G. Anastasselou and N. I. Ioakimidis, A new method for obtaining exact analytical formulae for the roots of transcendental functions, Lett. Math. Phys., 8 (1984), pp. 135–143.

    Google Scholar 

  5. E. G. Anastasselou and N. I. Ioakimidis, A new approach to the derivation of exact analytical formulae for the zeros of sectionally analytic functions, J. Math. Anal. Appl., 112 (1985), pp. 104–109.

    Google Scholar 

  6. A. C. Antoulas, On the scalar rational interpolation problem, IMA J. Math. Control Inf., 3 (1986), pp. 61–88.

    Google Scholar 

  7. A. C. Antoulas, Rational interpolation and the Euclidean algorithm, Linear Algebr. Appl., 108 (1988), pp. 157–171.

    Google Scholar 

  8. A. C. Antoulas, J. A. Ball, J. Kang, and J. C. Willems, On the solution of the minimal rational interpolation problem, Linear Algebr. Appl., 137/138 (1990), pp. 511–573.

    Google Scholar 

  9. L. Atanassova, On the simultaneous determination of the zeros of an analytic function inside a simple smooth closed contour in the complex plane, J. Comput. Appl. Math., 50 (1994), pp. 99–107.

    Google Scholar 

  10. J.-P. Berrut and H. D. Mittelmann, Matrices for the direct determination of the barycentric weights of rational interpolation, J. Comput. Appl. Math., 78 (1997), pp. 355–370.

    Google Scholar 

  11. A. W. Bojanczyk and G. Heinig, A multi-step algorithm for Hankel matrices, J. Complexity, 10 (1994), pp. 142–164.

    Google Scholar 

  12. L. C. Botten, M. S. Craig, and R. C. McPhedran, Complex zeros of analytic functions, Comput. Phys. Commun., 29 (1983), pp. 245–259.

    Google Scholar 

  13. A. Bultheel and M. Van Barel, Linear Algebra, Rational Approximation and Orthogonal Polynomials, vol. 6 of Studies in Computational Mathematics, North-Holland, Amsterdam, 1997.

    Google Scholar 

  14. E. E. Burniston and C. E. Siewert, The use of Riemann problems in solving a class of transcendental equations, Proc. Camb. Philos. Soc., 73 (1973), pp. 111–118.

    Google Scholar 

  15. S. Cabay and R. Meleshko, A weakly stable algorithm for Padé approximants and the inversion of Hankel matrices, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 735–765.

    Google Scholar 

  16. M. P. Carpentier and A. F. D. Santos, Solution of equations involving analytic functions, J. Comput. Phys., 45 (1982), pp. 210–220.

    Google Scholar 

  17. L. M. Delves and J. N. Lyness, A numerical method for locating the zeros of an analytic function, Math. Comp., 21 (1967), pp. 543–560.

    Google Scholar 

  18. Ö. Egecioglu and Ç. K. Koç, A fast algorithm for rational interpolation via orthogonal polynomials, Math. Comput., 53 (1989), pp. 249–264.

    Google Scholar 

  19. R.W. Freund and H. Zha, A look-ahead algorithm for the solution of general Hankel systems, Numer. Math., 64 (1993), pp. 295–321.

    Google Scholar 

  20. F. D. Gakhov, Boundary Value Problems, vol. 85 of International Series of Monographs in Pure and Applied Mathematics, Pergamon Press, Oxford, 1966.

    Google Scholar 

  21. L. Gemignani, Rational interpolation via orthogonal polynomials, Comput. Math. Applic., 26 (1993), pp. 27–34.

    Google Scholar 

  22. I. Gohberg and I. Koltracht, Mixed, componentwise, and structured condition numbers, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 688–704.

    Google Scholar 

  23. W. B. Gragg and M. H. Gutknecht, Stable look-ahead versions of the Euclidean and Chebyshev algorithms, in Approximation and Computation: A Festschrift in Honor of Walter Gautschi, R. V. M. Zahar, ed., Birkhäuser, Basel, 1994, pp. 231–260.

    Google Scholar 

  24. M. H. Gutknecht, Continued fractions associated with the Newton-Padé table, Numer. Math., 56 (1989), pp. 547–589.

    Google Scholar 

  25. M. H. Gutknecht, In what sense is the rational interpolation problem well posed?, Constr. Approx., 6 (1990), pp. 437–450.

    Google Scholar 

  26. M. H. Gutknecht, The rational interpolation problem revisited, Rocky Mt. J. Math., 21 (1991), pp. 263–280.

    Google Scholar 

  27. M. H. Gutknecht, Block structure and recursiveness in rational interpolation, in Approximation Theory VII, E. W. Cheney, C. K. Chui, and L. L. Schumaker, eds., Academic Press, New York, 1992, pp. 93–130.

    Google Scholar 

  28. V. Hribernig and H. J. Stetter, Detection and validation of clusters of polynomial zeros, J. Symbolic Computation, 24 (1997), pp. 667–681.

    Google Scholar 

  29. N. I. Ioakimidis, Quadrature methods for the determination of zeros of transcendental functions—a review, in Numerical Integration: Recent Developments, Software and Applications, P. Keast and G. Fairweather, eds., Reidel, Dordrecht, 1987, pp. 61–82.

    Google Scholar 

  30. N. I. Ioakimidis, A unified Riemann-Hilbert approach to the analytical determination of zeros of sectionally analytic functions, J. Math. Anal. Appl., 129 (1988), pp. 134–141.

    Google Scholar 

  31. N. I. Ioakimidis, A note on the closed-form determination of zeros and poles of generalized analytic functions, Stud. Appl. Math., 81 (1989), pp. 265–269.

    Google Scholar 

  32. N. I. Ioakimidis and E. G. Anastasselou, A new, simple approach to the derivation of exact analytical formulae for the zeros of analytic functions, Appl. Math. Comp., 17 (1985), pp. 123–127.

    Google Scholar 

  33. N. I. Ioakimidis and E. G. Anastasselou, On the simultaneous determination of zeros of analytic or sectionally analytic functions, Computing, 36 (1986), pp. 239–247.

    Google Scholar 

  34. T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.

    Google Scholar 

  35. P. Kirrinnis, Newton iteration towards a cluster of polynomial zeros, in Foundations of Computational Mathematics, F. Cucker and M. Shub, eds., Springer-Verlag, Berlin, 1997, pp. 193–215.

    Google Scholar 

  36. P. Kravanja, R. Cools, and A. Haegemans, Computing zeros of analytic mappings: A logarithmic residue approach, BIT, 38 (1998), pp. 583–596.

    Google Scholar 

  37. P. Kravanja, M. Van Barel, and A. Haegemans, On computing zeros and poles of meromorphic functions, in Computational Methods and Function Theory 1977, N. Papamichael, St. Ruscheweyh and E. B. Saff, eds., Series in Approximation and Decompositions, vol. 11, World Scientific, 1999, pp. 359–369.

  38. P. Kravanja, M. Van Barel, O. Ragos, M. N. Vrahatis, and F. A. Zafiropoulos, ZEAL: A mathematical software package for computing zeros of analytic functions, To appear in Comput. Phys. Commun.

  39. T.-Y. Li, On locating all zeros of an analytic function within a bounded domain by a revised Delves/Lyness method, SIAM J. Numer. Anal., 20 (1983), pp. 865–871.

    Google Scholar 

  40. J. N. Lyness and L. M. Delves, On numerical contour integration round a closed contour, Math. Comp., 21 (1967), pp. 561–577.

    Google Scholar 

  41. J. Meinguet, On the solubility of the Cauchy interpolation problem, in Approximation Theory, A. Talbot, ed., Academic Press, 1970, pp. 137–163.

  42. A. Neumaier, An existence test for root clusters and multiple roots, Z. Angew. Math. Mech., 68 (1988), pp. 256–257.

    Google Scholar 

  43. J. R. Partington, An Introduction to Hankel Operators, vol. 13 of London Mathematical Society Student Texts, Cambridge University Press, 1988.

  44. M. S. Petković, Inclusion methods for the zeros of analytic functions, in Computer Arithmetic and Enclosure Methods, L. Atanassova and J. Herzberger, eds., North-Holland, Amsterdam, 1992, pp. 319–328.

    Google Scholar 

  45. M. S. Petković and D. Herceg, Higher-order iterative methods for approximating zeros of analytic functions, J. Comput. Appl. Math., 39 (1992), pp. 243–258.

    Google Scholar 

  46. M. S. Petković and Z. M. Marjanović, A class of simultaneous methods for the zeros of analytic functions, Comput. Math. Appl., 22 (1991), pp. 79–87.

    Google Scholar 

  47. T. Sakurai, T. Torii, N. Ohsako, and H. Sugiura, A method for finding clusters of zeros of analytic function, in Special Issues of Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM). Issue 1: Numerical Analysis, Scientific Computing, Computer Science, 1996, pp. 515–516. Proceedings of the International Congress on Industrial and Applied Mathematics (ICIAM/GAMM 95), Hamburg, July 3–7, 1995.

  48. G. W. Stewart, Perturbation theory for the generalized eigenvalue problem, in Recent Advances in Numerical Analysis, C. de Boor and G. H. Golub, eds., Academic Press, New York, 1978, pp. 193–206.

    Google Scholar 

  49. T. Torii and T. Sakurai, Global method for the poles of analytic function by rational interpolant on the unit circle, World Sci. Ser. Appl. Anal., 2 (1993), pp. 389–398.

    Google Scholar 

  50. W. Van Assche, Orthogonal polynomials in the complex plane and on the real line, in Special Functions, q-Series and Related Topics, M. E. H. Ismail, D. R. Masson, and M. Rahman, eds., vol. 14 of Fields Institute Communications, American Mathematical Society, Providence, RI, 1997, pp. 211–245.

    Google Scholar 

  51. M. Van Barel and A. Bultheel, A new approach to the rational interpolation problem, J. Comput. Appl. Math., 32 (1990), pp. 281–289.

    Google Scholar 

  52. J. H. Wilkinson, The evaluation of the zeros of ill-conditioned polynomials. Part I, Numer. Math., 1 (1959), pp. 150–166.

    Google Scholar 

  53. J.-C. Yakoubsohn, Approximating the zeros of analytic functions by the exclusion algorithm, Numerical Algorithms, 6 (1994), pp. 63–88.

    Google Scholar 

  54. X. Ying and I. N. Katz, A simple reliable solver for all the roots of a nonlinear function in a given domain, Computing, 41 (1989), pp. 317–333.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kravanja, P., Sakurai, T. & Van Barel, M. On Locating Clusters of Zeros of Analytic Functions. BIT Numerical Mathematics 39, 646–682 (1999). https://doi.org/10.1023/A:1022387106878

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022387106878

Navigation