Skip to main content
Log in

Equations of State for Technical Applications. I. Simultaneously Optimized Functional Forms for Nonpolar and Polar Fluids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

New functional forms for multiparameter equations of state have been developed for non- and weakly polar fluids and for polar fluids. The resulting functional forms, which were established with an optimization algorithm which considers data sets for different fluids simultaneously, are suitable as a basis for equations of state for a broad variety of fluids. With regard to the achieved accuracy, the functional forms were designed to fulfill typical demands of advanced technical application. They are numerically very stable, and their substance-specific coefficients can easily be fitted to restricted data sets. In this way, a fast extension of the group of fluids for which accurate empirical equations of state are available becomes possible. This article deals with characteristic features of the new class of simultaneously optimized equations of state. Shortcomings of existing multiparameter equations of state widely used in technical applications are briefly discussed, and demands on the new class of equations of state are formulated. Substance specific parameters and detailed comparisons are given in subsequent articles for the non- and weakly polar fluids (methane, ethane, propane, isobutane, n-butane, n-pentane, n-hexane, n-heptane, n-octane, argon, oxygen, nitrogen, ethylene, cyclohexane, and sulfur hexafluoride) and for the polar fluids (trichlorofluoromethane (CFC-11), dichlorodifluoromethane (CFC-12), chlorodifluoromethane (HCFC-22), difluoromethane (HFC-32), 1,1,2-trichlorotrifluoroethane (CFC-113), 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123), pentafluoroethane (HFC-125), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1-trifluoroethane (HFC-143a), 1,1-difluoroethane (HFC-152a), carbon dioxide, and ammonia) considered to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. U. Setzmann and W. Wagner, J. Phys. Chem. Ref. Data 20:1061(1991).

    Google Scholar 

  2. R. Span and W. Wagner, J. Phys. Chem. Ref. Data 25:1509(1996).

    Google Scholar 

  3. W. Wagner and A. Pruß, J. Phys. Chem. Ref. Data 31:387(2002).

    Google Scholar 

  4. C. Tegeler, R. Span, and W. Wagner, J. Phys. Chem. Ref. Data 28:779(1999).

    Google Scholar 

  5. R. Span, E. W. Lemmon, R. T Jacobsen, W. Wagner, and A. Yokozeki, J. Phys. Chem. Ref. Data 29:1361(2000).

    Google Scholar 

  6. J. Smukala, R. Span, and W. Wagner, J. Phys. Chem. Ref. Data 29:1053(2000).

    Google Scholar 

  7. R. Schmidt and W. Wagner, Fluid Phase Equil. 19:175(1985).

    Google Scholar 

  8. R. S. Katti, R. T Jacobsen, R. B. Stewart, and M. Jahangiri, Adv. Cryo. Eng. 31:1189(1986).

    Google Scholar 

  9. K. M. de Reuck and R. J. B. Craven, International Thermodynamic Tables of the Fluid State—12. Methanol (Blackwell Scientific, London, 1993).

    Google Scholar 

  10. R. Tillner-Roth and H. D. Baehr, J. Phys. Chem. Ref. Data 23:657(1994).

    Google Scholar 

  11. R. Tillner-Roth and A. Yokozeki, J. Phys. Chem. Ref. Data 26:1273(1997).

    Google Scholar 

  12. E. W. Lemmon, R. T Jacobsen, S. G. Penoncello, and D. G. Friend, J. Phys. Chem. Ref. Data 29:331(2000).

    Google Scholar 

  13. R. Span, Multiparameter Equations of State—An Accurate Source of Thermodynamic Property Data (Springer, Berlin, 2000).

    Google Scholar 

  14. R. Span, H.-J. Collmann, and W. Wagner, Int. J. Thermophys. 19:491(1998).

    Google Scholar 

  15. R. Span and W. Wagner, Int. J. Thermophys. 24:41(2003).

    Google Scholar 

  16. R. Span and W. Wagner, Int. J. Thermophys. 24:111(2003).

    Google Scholar 

  17. M. Benedict, G. B. Webb, and L. C. Rubin, J. Chem. Physics 8:334(1940).

    Google Scholar 

  18. E. Bender, Equations of state exactly representing the phase behavior of pure substances, in Proc. 5th Symp. Thermophys. Prop. (ASME, New York, 1970), pp. 227-235.

    Google Scholar 

  19. R. T Jacobsen and R. B. Stewart, J. Phys. Chem. Ref. Data 2:757(1973).

    Google Scholar 

  20. W. Duschek, R. Kleinrahm, and W. Wagner, J. Chem. Thermodynamics 22:827(1990).

    Google Scholar 

  21. R. Gilgen, R. Kleinrahm, and W. Wagner, J. Chem. Thermodynamics 24:1243(1992).

    Google Scholar 

  22. K. Brachthäuser, R. Kleinrahm, H.-W. Lösch, and W. Wagner, VDI-Fortschritt Ber., Reihe 8, No. 371 (VDI-Verlag, Düsseldorf, 1993).

    Google Scholar 

  23. J. Klimeck, R. Kleinrahm, and W. Wagner, J. Chem. Thermodynamics 33:251(2001); (a) P. H. Salim and M. A. Trebble, Fluid Phase Equil. 65:41(1991).

    Google Scholar 

  24. R. Niepmann, J. Chem. Thermodynamics 16:851(1984).

    Google Scholar 

  25. A. Polt, Zur Beschreibung Thermodynamischer Eigenschaften reiner Fluide mit “Erweiterten BWR-Gleichungen,” Ph.D. thesis (University Kaiserslautern, 1987).

  26. E. W. Lemmon and R. Tillner-Roth, Fluid Phase Equil. 165:1(1999).

    Google Scholar 

  27. J. Ahrendts and H. D. Baehr, Int. J. Chem. Eng. 21:557(1981).

    Google Scholar 

  28. J. Ahrendts and H. D. Baehr, Int. J. Chem. Eng. 21:572(1981).

    Google Scholar 

  29. U. Setzmann and W. Wagner, Int. J. Thermophys. 10:1103(1989).

    Google Scholar 

  30. R. T Jacobsen, S. G. Penoncello, E. W. Lemmon, and R. Span, Multiparameter equations of state, in Equations of State for Fluids and Fluid Mixtures, J. V. Sengers, R. F. Kayser, C. J. Peters, and H. J. White Jr., eds. (Elsevier, Amsterdam, 2000).

    Google Scholar 

  31. B. Saager, R. Hennenberg, and J. Fischer, Fluid Phase Equil. 72:41(1992).

    Google Scholar 

  32. C. Tegeler, R. Span, and W. Wagner, VDI Fortschritt-Berichte, Reihe 3, No. 480 (VDI-Verlag, Düsseldorf, 1997).

    Google Scholar 

  33. E. A. Mason and T. H. Spurling, The virial equation of state, in The International Encyclopedia of Physical Chemistry and Chemical Physics (Pergamon, Oxford, 1969).

    Google Scholar 

  34. R. Span and W. Wagner, Int. J. Thermophys. 18:1415(1997).

    Google Scholar 

  35. A. S. Teja, R. J. Lee, D. Rosenthal, and M. Anselme, Fluid Phase Equil. 56:153(1990).

    Google Scholar 

  36. L. Riedel, Chem. Eng. Tech. 35:433(1963).

    Google Scholar 

  37. G. R. Somayajulu, J. Chem. Eng. Data 34:106(1989).

    Google Scholar 

  38. A. Vetere, Fluid Phase Equil. 109:17(1995).

    Google Scholar 

  39. R. Tillner-Roth and H. D. Baehr, J. Chem. Thermodynamics 24:413(1992).

    Google Scholar 

  40. R. Tillner-Roth and H. D. Baehr, J. Chem. Thermodynamics 25:277(1993).

    Google Scholar 

  41. M. Dressner and K. Bier, VDI Fortschritt-Berichte, Reihe 3, No. 332 (VDI-Verlag, Düsseldorf, 1993).

    Google Scholar 

  42. J. Klomfar, J. Hruby, and O. šifner, Int. J. Thermophys. 14:727(1993).

    Google Scholar 

  43. I. M. Abdulagatov, Experimental Results for the Isochoric Heat Capacity of n‐Heptane and n‐Octane. Private communication (National Institute of Standards and Technology, Boulder, Colorado, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Span, R., Wagner, W. Equations of State for Technical Applications. I. Simultaneously Optimized Functional Forms for Nonpolar and Polar Fluids. International Journal of Thermophysics 24, 1–39 (2003). https://doi.org/10.1023/A:1022390430888

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022390430888

Navigation