Skip to main content
Log in

Oxidative Phosphorylation Enzymes in Normal and Neoplastic Cell Growth

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Cancer cells, despite growing aerobically, have the propension to utilize the glycolytic pathway as energy source. This biochemical phenotype is accompanied by a decreased content of mitochondria and, paradoxically, by enhanced transcription of nuclear and mitochondrial-encoded genes for the enzymes of oxidative phosphorylation (OXPHOS). The role of OXPHOS enzymes in normal and neoplastic cell growth has been studied in liver regeneration and human hepatocellular carcinoma. In early liver regeneration characterized by active mtDNA replication, a decrease in the content and activity of ATP synthase occurs while transcription of the ATPsynβ nuclear gene is activated. Translation of ATP synthase subunits seems, on the contrary, to be less effective in this phase. In the second replicative phase of liver regeneration, the repression of ATPsynβ translation is relieved and normal cell growth starts. In this replicative phase the recovery of the liver mass appears to be directly related to the recovery of the OXPHOS capacity. Mitochondria isolated from biopsies of human hepatocellular carcinoma exhibit a decreased rate of respiratory ATP synthesis (OXPHOS) and a decreased ATPase activity. The decline in the activity of the ATP synthase is found to be associated with a decreased content of the ATPsynβ in the inner mitochondrial membrane. In neoplastic tissue the ATPase inhibitor protein (IF1) is overexpressed. This could contribute to prevent hydrolysis of glycolytic ATP in cancer cells. A peptide segment of IF1 (IF1-(42-58)-peptide), constructed by chemical synthesis, proved to be equally effective as IF1 in inhibiting the ATPase activity of the ATP synthase complex in the mitochondrial membrane deprived of IF1. The synthetic peptide might turn out to be a useful tool to develop immunological approaches for the control of neoplastic growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Arora, K. K., and Pedersen, P. L. (1988). J. Biol. Chem. 263, 17422–17428.

    Google Scholar 

  • Barbour, R. L., and Chan, S. H. P. (1983). Cancer Res. 43, 1511–1517.

    Google Scholar 

  • Bhat, N. K., Fisher, R. J., Fujiwara, S., Ascione, R., and Papas, T. S. (1987). Proc. Natl. Acad. Sci. USA 84, 3161–3165.

    Google Scholar 

  • Buckle, M., Guerrieri, F., and Papa, S. (1985a). FEBS Lett. 188, 345–351.

    Google Scholar 

  • Buckle, M., Guerrieri, F. and Papa, S. (1985b). In: Cell Membranes and Cancer (Galeotti, T., Cittadini, A., Neri, G., Papa, S., and Smets, L. A., eds.), Elsevier Science Publishers, Amsterdam, pp. 193–201.

    Google Scholar 

  • Buckle, M., Guerrieri, F., Pazienza, A., and Papa, S. (1986). Eur. J. Biochem. 155, 439–445.

    Google Scholar 

  • Capuano, F., Stefanelli, R., Carrieri, E., and Papa, S. (1989). Cancer Res. 49, 6547–6550.

    Google Scholar 

  • Capuano, F., Varone, D., D'Eri, N., Russo, E., Tommasi, S., Montemurro, S., Prete, F., and Papa, S. (1996). Biochem. Mol. Biol. Int. 38, 1013–1022.

    Google Scholar 

  • Chernyak, B. V., Dukhovic, V. P., and Khodjaev, E. Y. (1991). Arch. Biochem. Biophys. 286, 604–609.

    Google Scholar 

  • Corral, M., Paris, B., Baffet, G., Tichomichy, L., Gugeren-Guillouzo, C., Khruh, J., and Defer, N. (1989). Exp. Cell. Res. 184, 158–166.

    Google Scholar 

  • Daga, A., Micol, V., Hess, D., Aebersold, R., Attardi, G. (1993). J. Biol. Chem. 268, 8123–30.

    Google Scholar 

  • Glaichenhaus, N., Leopold, P., and Cuzin, F. (1986). EMBO J. 15, 1261–1265.

    Google Scholar 

  • Goldberg, A. L. (1992). Eur J. Biochem. 203, 9–23.

    Google Scholar 

  • Guerrieri, F., Kalous, M., Capozza, G., Muolo, L., Drahota, Z., and Papa, S. (1994). Biochem. Mol. Biol. Int. 33, 117–129.

    Google Scholar 

  • Guerrieri, F., Muolo, L., Cocco, T., Capozza, G., Turturro, N., Cantatore, P., and Papa, S. (1995). Biochim. Biophys. Acta 1272, 95–100.

    Google Scholar 

  • Harris, D. A. (1984). In: H+ATPase (ATP Synthase) Structure, Function, Biogenesis (Papa, S., Altendorf, K., Ernster, L., and Packer, L. eds.), Adriatica Editrice, Bari, pp. 387–395.

    Google Scholar 

  • Izquierdo, J. M., Ricart, J., Ostronoff, L. K., Eges, G., and Cuezva, J. M. (1995). J. Biol. Chem. 270, 1–9.

    Google Scholar 

  • Jackson, P. J., and Harris, D. A. (1986). Biochem. J. 235, 577–583.

    Google Scholar 

  • Lai, H. S., Chen, W. J., and Chen, K. M. (1992). J. Parent. Nat. 16, 152–156.

    Google Scholar 

  • Lau, B. W. C., and Chan, S. H. P. (1984). Cancer Res. 44,4458–4464.

    Google Scholar 

  • Lebowitz, M. S., and Pedersen, P. L. (1993). Arch. Biochem. Biophys. 301, 64–70.

    Google Scholar 

  • Luciakova, K., and Kuzela, S. (1994). FEBS Lett. 177, 85–88.

    Google Scholar 

  • Luciakova, K., and Kuzela, S. (1992). Eur. J. Biochem. 205, 1187–1193.

    Google Scholar 

  • Nagino, M., Tanaka, M., Nishikimi, M., Nimura, Y., Kusota, H., Kanai, M., Kato, T., and Ozawa, T. (1989). Cancer Res. 49, 4913–4918.

    Google Scholar 

  • Nagley, P. (1991). Trends Genet. 7, 1–4.

    Google Scholar 

  • Nakashima, R. A., Paggi, M. G., and Pedersen, P. L. (1984). Cancer Res. 44, 5702–5706.

    Google Scholar 

  • Papa, S. (1996). Biochim. Biophys. Acta 1276, 87–105.

    Google Scholar 

  • Papa, S., Capuano, F., Capitanio, N., Lorusso, M., and Galeotti, T. (1983). Cancer Res. 43, 834–838.

    Google Scholar 

  • Papa, S., Zanotti, F., Cocco, T., Perrucci, C., Candita, C., and Minuto, M. (1996). Eur. J. Biochem. 240, 461–467.

    Google Scholar 

  • Paradies, G., Capuano, F., Palombini, G., Galeotti, T., and Papa, S. (1983). Cancer Res. 43, 5068–5071.

    Google Scholar 

  • Petit, P. X., Susin, S. A., Zamzami, N., Mignotte, B., and Kroemer, G. (1996). FEBS Lett. 396, 7–13.

    Google Scholar 

  • Pedersen, P. L. (1978). Prog. Exp. Tumour Res. 22, 190–274.

    Google Scholar 

  • Scarpulla, R. C. (1997). In: Frontiers of Cellular Bioenergetics: Molecular Biology, Biochemistry and Physiopathology (Tager, J. M., Papa S., and Guerrieri, F. eds.), Plenum Press, New York, in press.

    Google Scholar 

  • Schnizer, R., Van Heeke, G., Amaturo, D., and Schuster, S. M. (1996). Biochim. Biophys. Acta 1292, 241–248.

    Google Scholar 

  • Shadel, G. S., and Clayton, D. A. (1993). J. Biol. Chem. 268, 11983–16086.

    Google Scholar 

  • Taketa, K., Shimamura, J., Ueda, M., Shimada, Y., and Kosaka, K. (1988). Cancer Res. 48, 467–474.

    Google Scholar 

  • Torroni, A., Stepien, G., Hodge, J. A., and Wallace, D. C. (1990). J. Biol. Chem. 265, 20589–20593.

    Google Scholar 

  • Uriel, J. (1979). Adv. Cancer. Res. 29, 127–174.

    Google Scholar 

  • Villena, J. A., Martin, I., Vins, O., Cormand, B., Iglesias, R., Mampel, T., Girolt, M., and Villeroya, F. (1994). Biochem. Biophys. Res. Commun. 159, 1100–1106.

    Google Scholar 

  • Wasylyk, B., Hahn, S. L., and Giovane, A. (1993). Eur. J. Biochem. 211, 7–18.

    Google Scholar 

  • Yamamoto, A., Horai, S., and Yuasa, Y. (1989). Biochem. Biophys. Res. Commun. 159, 1100–1106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capuano, F., Guerrieri, F. & Papa, S. Oxidative Phosphorylation Enzymes in Normal and Neoplastic Cell Growth. J Bioenerg Biomembr 29, 379–384 (1997). https://doi.org/10.1023/A:1022402915431

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022402915431

Navigation