Skip to main content
Log in

Diversity of soil oribatid mites (Acari: Oribatida) from High Katanga (Democratic Republic of Congo): a multiscale and multifactor approach

  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

Although the soil is a major reservoir of biodiversity, our knowledge ofits mesofauna remains scanty, especially in the tropics. The diversity oforibatids (149 adult oribatid mite species) is analyzed for the first time in anAfrican soil and studied in three ecosystems of a regressive sere: forest,woodland and savanna. Savanna is the richest ecosystem overall, with 105collected species, whereas the mean number of species per relevé (αdiversity) is highest in forest. In barren soils, the number of species observedalong the sere drops regularly from the typical forest to the savanna. However,this pattern is complicated by other factors acting at different scales. Theincrease of oribatid richness parallels that of habitat complexity, from barrensoil to termitaria colonized by grasses and trees. On a finer scale, soilproperties also influence species richness, either indirectly through density(water content) or directly (total nitrogen, C/N ratio, organic matter), buttheir importance varies in relation to seasons. Most exclusive species (nearly90%) are housed in the two extreme types of vegetation, forest and savanna. On afiner scale, two habitats, the typical forest and the termitaria in the savanna,are remarkable by the number of exclusive species and are worth protectingthrough effective conservation measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adis J. and Harvey M.S. 2000. How many arachnida and myriapoda are there world-wide and in Amazonia? Studies Neotropical Fauna and Environment 35: 139–141.

    Google Scholar 

  • Aloni K. 1985. Contribution à l'etude de la genèse des nodules carbonatés dans les hautes termitières du Haut-Shaba (Zaïre). Annales de la Facultés des Sciences de Lubumbashi 4: 79–94.

    Google Scholar 

  • Anderson J.M. 1978. Inter-and intra-habitat relationships between woodland Cryptostigmata species diversity and the diversity of soil and litter microhabitats. Oecologia (Berl.) 32: 341–348.

    Google Scholar 

  • Anderson J.M. and Hall H. 1977. Cryptostigmata species diversity and soil habitat structure. Soil organisms as components of ecosystems. Ecology Bulletin (Stockholm) 25: 473–475.

    Google Scholar 

  • André H.M., Ducarme X., Anderson J.M., Crossley D.A. Jr, Koehler H.H., Paoletti M.G. et al. 2001. Skilled eyes are needed to go on studying the richness of the soil. Nature 409: 761.

    Google Scholar 

  • André H.M., Ducarme X. and Lebrun Ph. 2002. Soil biodiversity: myth, reality or conning? Oikos 96: 3–24.

    Google Scholar 

  • André H.M., Lebrun Ph. and Noti M.I. 1992. Biodiversity in Africa: a plea for more data. Journal of African Zoology 106: 3–15.

    Google Scholar 

  • André H.M., Noti M.I. and Jacobson K.M. 1997. The soil microarthropods of the Namib desert: a patchy mosaic. Journal of African Zoology 111: 499–517.

    Google Scholar 

  • Athias F. 1972. Scutacaridae de la savane de Lamto (Côte-d'Ivoire) (Acariens: Tarsonemida). I. Données quantitatives sur le peuplement, liste des espéces de Scutacarinae, description de trois espéces nouvelles. Acarologia 14: 638–656.

    Google Scholar 

  • Athias F. 1973. Scutacaridae de la savane de Lamto (Côte-d'Ivoire) (Acariens: Tarsonemida). 2. Imparidinae, avec description d'une nouvelle espéce. Acarologia 15: 129–137.

    Google Scholar 

  • Athias F. 1975. Données complémentaires sur l'abondance et la distribution verticale des Microarthropodes de la savane de Lamto (Côte-d'Ivoire). Bulletin du Muséum national d'Histoire naturelle (3e sér.) Écologie Generale 24: 1–28.

    Google Scholar 

  • Athias F. 1976. Recherche sur les microarthropodes du sol de la savane de Lamto (Côte-d'Ivoire). Annales de l'Université d'Abidjan, ser. E, Ecologie 9: 193–271.

    Google Scholar 

  • Behan-Pelletier V.M., Paoletti M.G., Bissett B. and Stinner B.R. 1993. Oribatid mites of forest habitats in northern Venezuela. Tropical Zoology 1 special issue: 39–54.

    Google Scholar 

  • Belfield W. 1971. The effect of shade on the arthropod population and nitrate content of a West African soil. In: d'Aguilar J., Athias-Henriot C., Besard A., Bouche M.B. and Pussard M. (eds), Organismes du sol et production primaire. Proceedings of the 4th Colloquium on Soil Zoology. Institut National de la Recherche Agronomique, Paris, pp. 557–567.

    Google Scholar 

  • Block W.C. 1970. Micro-arthropods in some Uganda soils. In: Philippson J. (ed.), Proceedings of a UNESCO/IBP Symposium on Methods of Study in Soil Ecology. UNESCO, Paris, pp. 195–202.

  • Burnham K.P. and Overton W.S. 1978. Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika 65: 623–633.

    Google Scholar 

  • Burnham K.P. and Overton W.S. 1979. Robust estimation of population size when capture probabilities vary among animals. Ecology 60: 927–936.

    Google Scholar 

  • Chao A. 1987. Estimating the population size for capture–recapture data with unequal catchability. Biometrics 30: 783–791.

    Google Scholar 

  • Chao A., Ma M.C. and Yang M.C.K. 1993. Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika 80: 193–201.

    Google Scholar 

  • Colwell R.K. 1997. EstimateS: statistical estimation of species richness and shared species from sample. Version 5. User's Guide and Application. Published at: http://viceroy.eeb.uconn.edu/estimates.

  • Colwell R.K. and Coddington J.A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London 345B: 101–118.

    Google Scholar 

  • Copley J. 2000. Ecology goes underground. Nature 406: 452–454.

    Google Scholar 

  • Den Heyer J. and Ryke P.A.J. 1966. A mesofaunal investigation of the soil in a thorn-tree (Acacia karroo) biotope. Revista de Biologia 5: 309–364.

    Google Scholar 

  • Forster J. and Sottas B. 1996. Towards a shift in research for development. A new agenda for partnership. In: Maselli D. and Sottas B. (eds), Research Partnerships for Common Concerns. Lit Verlag, Hamburg, Germany, pp. 41–58.

    Google Scholar 

  • Franklin E. 1994. Ecologia de oribatídeos (Acari: Oribatida) em florestas inundáveis da Amazônia central, Ph.D. Thesis, INPA/University Amazonas, Manaus, Brazil.

    Google Scholar 

  • Franklin E., Adis J. and Woas S. 1997. The oribatid mites. In: Junk W.J. (ed.), Ecological Studies,Vol 126. The Central Amazon Foodplain. Springer Verlag, Berlin, pp. 331–349.

    Google Scholar 

  • Gaston K.J. and May R.M. 1992. Taxonomy of taxonomists. Nature 356: 281–282.

    Google Scholar 

  • Ghabbour S.I. and Davis R.C. (eds) 1988. Proceedings of the Seminar on Resources of Soil Fauna in Egypt and Africa. Revue de Zoologie africaine 102, pp. 261–389.

  • Gobat J.M., Aragno M. and Matthey W. 1998. Le Sol vivant. Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland.

    Google Scholar 

  • Goffinet G. 1976. Ecologie édaphique des écosystèmes naturels du Haut-Shaba (Zaïre). II. Phenologie et fluctuations démographiques au niveau des groupes zoologiques dominants et de quelques popula-tions d'arthropodes. Bulletin d'Écologie 7: 335–352.

    Google Scholar 

  • Hansen R.A. 2000. Effects of habitat complexity and composition on a diverse litter microarthropod assemblage. Ecology 81: 1120–1132.

    Google Scholar 

  • Hansen R.A. and Coleman D.C. 1998. Litter complexity and composition are determinants of the diversity and species composition of oribatid mites (Acari: Oribatida) in litterbags. Applied Soil Ecology 9: 17–23.

    Google Scholar 

  • Janzen D.H. and Schoener T.W. 1968. Difference in insect abundance and diversity between wetter and drier sites during a tropical dry season. Ecology 49: 96–110.

    Google Scholar 

  • Lee S.M. and Chao A. 1994. Estimating population size via sample coverage for closed capture– recapture model. Biometrics 50: 88–97.

    Google Scholar 

  • Loots G.C. and Ryke P.A.J. 1966. A comparative, quantitative study of the micro-arthropods in different types of pasture soil. Zoologica Africana 2: 167–193.

    Google Scholar 

  • MacArthur R.J., Recher H. and Pianka E.R. 1966. On the relation between habitat selection and species diversity. American Naturalist 100: 319–332.

    Google Scholar 

  • Maldague M.E. 1961. Relations entre le couvert végétal et la microfaune. Institut national pour l'Étude agronomique du Congo, Série scientifique 90: 1–122.

    Google Scholar 

  • Maldague M.E. 1970. Rôle des animaux édaphiques dans la fertilité des sols forestiers. Institut national pour l'Étude agronomique du Congo, Série scientifique 112: 1–245.

    Google Scholar 

  • Noti M.I., André H.M. and Dufrêne M. 1996. Soil oribatid mite communities (Acari: Oribatida) from High Shaba (Zaïre) in relation to vegetation. Applied Soil Ecology 5: 81–96.

    Google Scholar 

  • Olivier P.G. and Ryke P.A.J. 1965. Seasonal fluctuations of the mesofauna in soil under Kikuyu grass. Memórias do Instituto de Investigação de Moçambique 7A: 235–279.

    Google Scholar 

  • Olivier P.G. and Ryke P.A.J. 1969. The influence of citricultural practices on the composition of soil Acari and Collembola populations. Pedobiologia 9: 277–281.

    Google Scholar 

  • Olivier P.G. and Ryke P.A.J. 1970. Soil mite populations in the rhizosphere of citrus trees at Zebediela estates, northern Transvaal.Wetenschapelike Bydraes van die Potchefstroom Universiteit 17B: 1–43.

    Google Scholar 

  • Pielou E.C. 1969. An Introduction to Mathematical Ecology. Wiley-Interscience, New York.

    Google Scholar 

  • Platnick N.I. 1991. Patterns of biodiversity: tropical vs. temperate. Journal of Natural History 25: 1083–1088.

    Google Scholar 

  • Reeves R.M. 1973. Oribatid ecology. In: Dindal D. (ed.), Proceedings of the First Soil Microcommunities Conference. US Atomic Energy Commission, Washington, DC, pp. 157–175.

    Google Scholar 

  • Ribeiro E.F. and Schubart H.O.R. 1989. Oribatídeos (Acari: Oribatida) colonizadores de folhas em decomposição sobre o solo de três sítios florestais da Amazônia Central. Boletim do Museu Paraense Emilio Goeldi, Serie Zoologia 54: 243–276.

    Google Scholar 

  • Shannon C.E. and Wiener W. 1962. The Mathematical Theory of Communication. 2nd edn. University of Illinois Press, Urbana, Illinois, 117 pp.

    Google Scholar 

  • Smith E.P. and Van Belle G. 1984. Nonparametric estimation of species richness. Biometrics 40: 119–129.

    Google Scholar 

  • Southwood T.R.E. 1978. Ecological Methods. 2nd edn. Chapman & Hall, London.

    Google Scholar 

  • Stanton N.L. 1979. Patterns of species diversity in temperate and tropical litter mites. Ecology 60: 295–304.

    Google Scholar 

  • Travé J., André H.M., Taberly G. and Bernini F. 1997. Les Acariens Oribates. AGAR Publishers, Wavre, Belgium.

    Google Scholar 

  • Truog E. 1930. The determination of readily available phosphorus. Journal of the American Society of Agronomy 22: 874–882.

    Google Scholar 

  • Usher M.B. 1988. Soil invertebrates: species, populations, communities, modelling and conservation with special reference to the African Continent. Journal of African Zoology 102: 285–300.

    Google Scholar 

  • Van den Berg R.A. and Ryke P.A.J. 1967. A systematic-ecological investigation of the acarofauna of the forest floor in Magoebaskloof (South Africa) with special reference to the mesostigmata. Revista de Biologia 6: 157–234.

    Google Scholar 

  • Walkley A. and Black I.A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37: 29–38.

    Google Scholar 

  • Wallwork J.A. 1983. Oribatids in forest ecosystems. Annual Review of Entomology 28: 109–130.

    Google Scholar 

  • Weis-Fogh T. 1948. Ecological investigations on mites and collemboles in the soil. Natura Jutlandica 1: 1–125.

    Google Scholar 

  • Wunderle I. 1992. Die baum-und bodenwohnenden Oribatiden (Acari) im Tieflandregenwald von Panguana, Peru. Amazonia 12: 119–142.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noti, MI., André, H.M., Ducarme, X. et al. Diversity of soil oribatid mites (Acari: Oribatida) from High Katanga (Democratic Republic of Congo): a multiscale and multifactor approach. Biodiversity and Conservation 12, 767–785 (2003). https://doi.org/10.1023/A:1022474510390

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022474510390

Navigation