Skip to main content
Log in

Bioisosteric Approach to Elucidation of Binding of the Acetate Group of a Moth Sex Pheromone Component to Its Receptor

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

A number of analogs of (Z)-5-decenyl acetate, a pheromone component of the turnip moth,Agrotis segetum, in which the acetate group has been replaced by functional groups that may function as bioisosters, have been synthesized and tested using single-cell electrophysiology. The activities have been interpreted in terms of the molecular electrostatic potentials of the polar functional group as calculated byab initio quantum mechanical calculations. It is concluded that both oxygens of the acetate group in (Z)-5-decenyl acetate contribute to the interactions between the pheromone component and its receptor. Furthermore, the results indicate that the crucial interaction between the carbonyl group and the receptor, which is most probably a hydrogen bonding interaction, takes place in a direction pointing away from the hydrocarbon chain of the pheromone component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • BENGTSSON, M. 1988. Structure-activity relationships for analogues of (Z)-5-decenyl acetate, a sex pheromone component of the turnip moth,Agrotis segetum. Synthesis and conformational analysis. PhD thesis. Lund University, Sweden.

  • BENGTSSON, M., LILJEFORS, T., and HANSSON, B. S. 1987. Dienic analogs of (Z)-5-decenyl acetate, a pheromone component of the turnip moth,Agrotis segetum: Synthesis, conformational analysis and structure-activity relationships.Bioorg. Chem. 15:409–422.

    Google Scholar 

  • BENGTSSON, M., LILJEFORS, T., HANSSON, B. S., LÖFSTEDT, C., and COPAJA, S. V. 1990. Structure-activity relationship for chain-shortened analogs of (Z)-5-decenyl acetate, a pheromone component of the turnip moth,Agrotis segetum.J. Chem. Ecol. 16:667–684.

    Google Scholar 

  • BILLMAN, J. H., and HARTING, W. F. 1948. Amino acids. V. Phthalyl derivatives.J. Am. Chem. Soc. 70:1473–1474.

    Google Scholar 

  • BROWN, H. C., CHENG, M. T., PARCELL, L. J., and PILIPOVICH, D. 1961. Synthesis of 2,5-bis(perfluoroalkyl)-1,3,4-oxadiazoles.J. Org. Chem. 26:4407–4409.

    Google Scholar 

  • BROWN, P., DAVIES, D. T., O'HANLON, P., and WILSON, J. M. 1996. The chemistry of pseudomonic acid. 15. Synthesis and antibacterial activity of a series of 5-alkyl, 5-alkenyl, and 5-hetero-substituted oxazoles.J. Med. Chem. 39:446–457.

    Google Scholar 

  • BUEMI, G., and GANDOLFO, C. 1989. Malondialdehyde and acetylacetone. An AM1 study of their molecular structure and keto-enol tautomerism.J. Chem. Soc. Faraday Trans. 2 85:215–227.

    Google Scholar 

  • CHANG, S.-K., VAN ENGEN, D., FAN, E., and HAMILTON, A. D. 1991. Hydrogen bonding and molecular recognition: Synthetic, complexation, and structural studies on barbiturate binding to an artificial receptor.J. Am. Chem. Soc. 113:7640–7645.

    Google Scholar 

  • DYKYJ, J., and RÉPAS, M. 1979. The Vapor Pressure of Organic Compounds, Vydavatelstvo Slovenskej Akademie Vied, Bratislava (in Slovak).

  • EMSLEY, J. 1984. The composition, structure and hydrogen bonding of the β-diketones.Struct. Bonding Berlin 57:147–191.

    Google Scholar 

  • ERNSTBRUNNER, E. E. 1970. Vibrational spectra of acetylacetone and its anion.J. Chem. Soc. (A) 1970:1558–1561.

    Google Scholar 

  • GARDETTE, M., ALEXAKIS, A., and NORMANT, J. F. 1983. Synthesis of (Z,Z)-3,13-octadecadienl-yl acetate. Component of the sex pheromone ofSynanthedon tenuis.J. Chem. Ecol. 9:225–233.

    Google Scholar 

  • GARDETTE, M., ALEXAKIS, A., and NORMANT, J. F. 1985. Carbocupration of alkynes by organocopper reagents bearing a protected hydroxy or thiol function.Tetrahedron 41:5887–5899.

    Google Scholar 

  • GUSTAVSSON, A.-L., LILJEFORS, T., and HANSSON, B. S. 1995. Alkyl ether and enol ether analogs of (Z)-5-decenyl acetate, a pheromone component of the turnip moth,Agrotis segetum: Probing a proposed bioactive conformation for chain-elongated analogs.J. Chem. Ecol. 21:815–832.

    Google Scholar 

  • HALLBERG, E. 1981. Fine-structural characteristics of the antennal sensilla ofAgrotis segetum (Insecta: Lepidoptera).Cell Tissue Res. 218:209–218.

    Google Scholar 

  • HANSSON, B. S., OCHIENG, S. A., WELLMAR, U., JÖNSSON, S., and LILJEFORS, T. 1996. No inhibitory effect on receptor neuron activity of sulfur analogs of the sex pheromone component (Z)-5-decenyl acetate in the turnip moth,Agrotis segetum (Lepidoptera: Noctuidae).Physiol. Entomol. 21:275–282.

    Google Scholar 

  • HAYES, F. N., ROGERS, B. S., and OTT, D. G. 1955. 2-5-Diaryloxazoles and 2,5-diaryl-1,3,4-oxadiazoles.J. Am. Chem. Soc. 77:1850–1852.

    Google Scholar 

  • HENECKA, H., and KURTZ, P. 1952. Methoden zur Herstellung und umwandlung von funktionellen N-derivaten der carboxylgruppe.Houben-Weyl Methoden Org. Chem. 8:651–673.

    Google Scholar 

  • HOSKOVEC, M., HOVORKA, O., KALINOVÁ, B., KOUTEK, B., STREINZ, A. S., ŠEBEK, P., ŠAMAN, D., and VRKOC, J. 1996. New mimics of the acetate function in pheromone-based attraction.Bioorg. Med. Chem. 4:479–488.

    Google Scholar 

  • HOUSE, H. O., CHU, C. Y., WILKINS, J. M., and UMEN, M. J. 1975. The chemistry of carbanions. XXVII. A convenient precursor for the generation of lithium organocuprates.J. Org. Chem. 40:1460–1469.

    Google Scholar 

  • HOUX, N. W. H., VOERMAN, S., and JONGEN, W. M. F. 1974. Purification and analysis of synthetic insect sex attractants by liquid chromatography on a silver-loaded resin.J. Chromatogr. 96:25–32.

    Google Scholar 

  • IIJIMA, K., OHNOGI, A., and SHIBATA, S. 1987. The molecular structure of acetylacetone as studied by gas-phase electron diffraction.J. Mol. Struct. 156:111–118.

    Google Scholar 

  • JÖNSSON, S., LILJEFORS, T., and HANSSON, B. S. 1991a. Alkyl substitution in terminal chain of (Z)-5-decenyl acetate, a pheromone component of turnip moth,Agrotis segetum. Synthesis, single-sensillum recordings, and structure activity relationships.J. Chem. Ecol. 17:103–122.

    Google Scholar 

  • JÖNSSON, S., LILJEFORS, T., and HANSSON, B. S. 1991b. Replacement of the terminal methyl group in a moth sex pheromone component by a halogen atom: Hydrophobicity and size effects on electrophysiological single-cell activities.J. Chem. Ecol. 17:1381–1397.

    Google Scholar 

  • JÖNSSON, S., LILJEFORS, T., and HANSSON, B. S. 1992. Introduction of methyl groups to acetate substituted chain of (Z)-5-decenyl acetate, a pheromone component of the turnip moth,Agrotis segetum: Synthesis, single-sensillum recordings, and structure-activity relationships.J. Chem. Ecol. 18:637–657.

    Google Scholar 

  • JÖNSSON, S., MALMSTRÖM, T., LILJEFORS, T., and HANSSON, B. S. 1993. Enantiomers of methyl substituted analogs of (Z)-5-decenyl acetate as probes for the chirality and complementarity of its receptor inAgrotis segetum: Synthesis and structure-activity relationships.J. Chem. Ecol. 19:459–484.

    Google Scholar 

  • KAISSLING, K.-E. 1974. Sensory transduction in insect olfactory receptors, pp. 243–273,in L. Jaenicke (ed.). Biochemistry of Sensory Functions. Springer-Verlag, Berlin.

    Google Scholar 

  • LILJEFORS, T., THELIN, B., and VAN DER PERS, J. N. C. 1984. Structure-activity relationships between stimulus molecule and response of a pheromone receptor cell in turnip moth,Agrotis segetum, modifications of the acetate group.J. Chem. Ecol. 10:1661–1675.

    Google Scholar 

  • LILJEFORS, T., THELIN, B.,VAN DER PERS, J. N., and LÖFSTEDT, C. 1985. Chain-elongated analogs of a pheromone component of the turnip moth,Agrotis segetum. A structure-activity study using molecular mechanics.J. Chem. Soc. Perkin Trans. 2:1957–1962.

    Google Scholar 

  • LILJEFORS, T., BENGTSSON, M., and HANSSON, B. S. 1987. Effects of double-bond configuration on interaction between a moth sex pheromone component and its receptor: A receptor-interaction model based on molecular mechanics.J. Chem. Ecol. 13:2023–2040.

    Google Scholar 

  • LOWREY, A. H., GEORGE, C., D'ANTONIO, P., and KARLE, K. 1971. Structure of acetylacetone by electron diffraction.J. Am. Chem. Soc. 93:6399–6403.

    Google Scholar 

  • LÖFSTEDT, C., VAN DER PERS, J. N. C., LÖFQUIST, J., LANNE, B. S., APPELGREN, M., BERGSTRÖM, G., and THELIN, B. 1982. Sex pheromone components of the turnip moth,Agrotis segetum: Chemical identification, electrophysiological evaluation and behavioral activity.J. Chem. Ecol. 8:1305–1321.

    Google Scholar 

  • OLSSON, A.-M., JÖNSSON, J. Å., THELIN, B., and LILJEFORS, T. 1983. Determination of vapor pressures of moth sex pheromone components by a gas chromatographic method.J. Chem. Ecol. 9:375–385.

    Google Scholar 

  • ORLEK, B. S., BLANEY, F. E., BROWN, F., CLARK, M. S. G., HADLEY, M. S., HATCHER, J., RILEY, G. J., ROSENBERG, H. E., WADSWORTH, H. J., and WYMAN, P. 1991. Comparison of azabicyclic esters and oxadiazoles as ligands for the muscarinic receptor.J. Med. Chem. 34:2726–2735.

    Google Scholar 

  • OSBY, J. O., MARTIN, M. G., and GANEM, B. 1984. An exceptionally mild deprotection of phthalimides.Tetrahedron Lett. 25:2093–2096.

    Google Scholar 

  • PATANI, G. A., and LAVOIE, E. J. 1996. Bioisosterism: A rational approach in drug design.Chem. Rev. 96:3147–3176.

    Google Scholar 

  • PENN, J. H., OWENS, W. H., PETERSEN, J. L., FINKLEA, H. O., and SNIDER, D. A. 1993. Mixed anhydrides: Physical properties influenced by molecular structure.J. Org. Chem. 58:2128–2133.

    Google Scholar 

  • POLITZER, P., and MURRAY, J. S. 1991. Molecular electrostatic potentials and chemical reactivity, pp. 273–312,in K. B. Lipkowitz and D. B. Boyd (eds.). Reviews in Computational Chemistry, Vol. 2. VCH Publishers, New York.

    Google Scholar 

  • POSNER, G. H. 1975. Substitution reactions using organocopper reagents.Org. React. 22:253–400.

    Google Scholar 

  • PRESTWICH, G. D. 1996. Proteins that smell: Pheromone recognition and signal transduction.Bioorg. Med. Chem. 4:505–513.

    Google Scholar 

  • PRESTWICH, G. D., DU, G., and LAFOREST, S. 1995. How is pheromone specificity encoded in proteins?Chem. Senses 20:461–469.

    Google Scholar 

  • PRIESNER, E., JACOBSON, M., and BESTMANN, H. J. 1975. Structure-response relationships in noctuid sex pheromone reception. An introductory report.Z. Naturforsch. 30c:283–293.

    Google Scholar 

  • SWAMER, F. W., and HAUSER, C. R. 1950. Claisen acylations and carbethoxylations of ketones and esters by means of sodium hydride.J. Am. Chem. Soc. 72:1352–1356.

    Google Scholar 

  • TAMAKI, Y., NOGUCHI, H., HORIIKE, M., and HIRANO, C. 1984. Biological activities of analogues of 10-methyldodecyl acetate, a sex-pheromonal component of the smaller tea tortrix moth (Adoxophyes sp., Lepidoptera: Tortricidae).Appl. Entomol. Zool. 19:245–251.

    Google Scholar 

  • VAN DER PERS, J. N. C., andDEN OTTER, C. J. 1978. Single-cell responses from olfactory receptors of small ermine moths (Lepidoptera: Yponomeutidae) to sex attractants.J. Insect Physiol. 24:337–343.

    Google Scholar 

  • VAN DER PERS, J. N. C., and LÖFSTEDT, C. 1983. Continuous single sensillum recording as a detection method for moth pheromone components in the effluent of a gas chromatograph.Physiol. Entomol. 8:203–211.

    Google Scholar 

  • VLEDDER, H. J., MULHOFF, F. C., LEYTE, J. C., and ROMERS, C. 1971. An electron diffraction investigation of the molecular structure of gaseous acetic anhydride.J. Mol. Struct. 7:421–429.

    Google Scholar 

  • WARTHEN, J. D., KLUN, J. A., SCHWARZ, M., and WAKABAYASHI, N. 1995. Structure-activity relationship observations for European corn borer moth pheromone and fluoro analogs via computer molecular modeling.J. Chem. Ecol. 21:1921–1930.

    Google Scholar 

  • WATSON, S. C., and EASTHAM, J. F. 1967. Colored indicators for simple direct tiration of magnesium and lithium reagents.J. Organomet. Chem. 9:165–168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gustavsson, AL., Tuvesson, M., Larsson, M.C. et al. Bioisosteric Approach to Elucidation of Binding of the Acetate Group of a Moth Sex Pheromone Component to Its Receptor. J Chem Ecol 23, 2755–2776 (1997). https://doi.org/10.1023/A:1022563010599

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022563010599

Navigation