Skip to main content
Log in

Apparent Molar Volume, Heat Capacity, and Conductance of Lithium Bis(trifluoromethylsulfone)imide in Glymes and Other Aprotic Solvents

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Lithium bis(trifluoromethylsulfone)imide (LiTFSI) is a promising electrolyte for high-energy lithium batteries due to its high solubility in most solvents and electrochemical stability. To characterize this electrolyte in solution, its conductance and apparent molar volume and heat capacity were measured over a wide range of concentration in glymes, tetraethylsulfamide (TESA), acetonitrile, γ-butyrolactone, and propylene carbonate at 25°C and were compared with those of LiClO4 in the same solvents. The glymes or n(ethylene glycol) dimethyl ethers (nEGDME), which have the chemical structure CH3−O−(CH2−CH2−O) n −CH3 for n = 1 to 4, are particularly interesting since they are electrochemically stable, have a good redox window, and are analogs of the polyethylene oxides used in polymer-electrolyte batteries. TESA is a good plasticizer for polymer-electrolyte batteries. Whenever required, the following properties of the pure solvents were measured: compressibilities, expansibilities, temperature and pressure dependences of the dielectric constant, acceptor number, and donor number. These data were used in particular to calculate the limiting Debye-Hückel parameters for volumes and heat capacities. The infinite dilution properties of LiTFSI are quite similar to those of other lithium salts. At low concentrations, LiTFSI is strongly associated in the glymes and moderately associated in TESA. At intermediate concentrations, the thermodynamic data suggests that a stable solvate of LiTFSI in EGDME exists in the solution state. At high concentrations, the thermodynamic properties of the two lithium salts approach those of the molten salts. These salts have a reasonably high specific conductivity in most of the solvents. This suggests that the conductance of ions at high concentration in solvents of low dielectric constant is due to a charge transfer process rather than to the migration of free ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Armand, J. Y. Sanchez, M. Gauthier, and Y. Choquette, in Electrochemistry of Novel Materials, J. Lipkowski and P. N. Ross, eds. (VCH Publishers, New York, 1994), p. 65.

    Google Scholar 

  2. M. Salomon, J. Solution Chem. 22, 715 (1993).

    Google Scholar 

  3. A. Webber, J. Electrochem. Soc. 138, 2586 (1991).

    Google Scholar 

  4. G. Perron, D. Brouillette, and J. E. Desnoyers, Electrochem. Soc. Extended Abstr. 95, 147 (1995).

    Google Scholar 

  5. C. L. Matthias, P. M. Shah, and M. L. Kronenberg, Electrochem. Soc. Extended Abstr. 95, 141 (1995).

    Google Scholar 

  6. L. A. Dominey, V. R. Koch, and T. Blakley, Electrochim. Acta 37, 1551 (1991).

    Google Scholar 

  7. J. E. Desnoyers and C. Jolicoeur, in Comprehensive Treatise of Electrochemistry, B. E. Conway, J. O'M. Bockris, and E. Yeager, eds. (Plenum, New York, 1983), Chap. 1.

    Google Scholar 

  8. J. F. Côté, J. E. Desnoyers, and J.-C. Justice, J. Solution. Chem. 25, 113 (1996).

    Google Scholar 

  9. G. Perron, L. Couture, D. Lambert, and J. E. Desnoyers, J. Electroanal. Chem. 355, 277 (1996).

    Google Scholar 

  10. G. Perron, D. Brouillette, and J. E. Desnoyers, Can. J. Chem. 75, 1608 (1997).

    Google Scholar 

  11. P. Picker, P.-A. Leduc, P. R. Philip, and J. E. Desnoyers, J. Chem. Thermodyn. 3, 631 (1971).

    Google Scholar 

  12. J. E. Desnoyers, C. De Visser, G. Perron, and P. Picker, J. Solution. Chem. 5, 605 (1976).

    Google Scholar 

  13. R. C. Weast, ed., Handbook of Chemistry and Physics, 70th edn. (CRC Press, Boca Raton, Florida, 1990).

    Google Scholar 

  14. P. Picker, E. Tremblay, and C. Jolicoeur, J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  15. H. S. Harried and B. B. Owen, The Physical Properties of Electrolytic Solutions, 3rd edn. (Reinhold, New York, 1958).

    Google Scholar 

  16. J.-F. Côté, D. Brouillette, J. E. Desnoyers, J.-F. Rouleau, J.-M. St-Arnaud, and G. Perron, J. Solution Chem. 25, 1163 (1996).

    Google Scholar 

  17. R. H. Erlich, and A. I. Popov, J. Am. Chem. Soc. 93, 5620 (1971).

    Google Scholar 

  18. V. Gutmann, The donor-Acceptor Approach to Molecular Interactions, (Plenum, New York, 1978).

    Google Scholar 

  19. K. Burger, Solvation, Ionic and Complex Formation Reactions in Non-aqueous Solvents (Elsevier Scientific Pub. Co., Budapest, 1983).

    Google Scholar 

  20. V. Gutmann, Electrochim. Acta 21, 661 (1976).

    Google Scholar 

  21. H. Erlich, E. Roach, and A. I. Popov, J. Am. Chem. Soc. 92, 4909 (1970).

    Google Scholar 

  22. U. Mayer, V. Gutmann, and W. Gerger, Monatsh. Chem. 106, 1235 (1975).

    Google Scholar 

  23. V. Gutmann, Coord. Chem. Rev. 18, 225 (1976).

    Google Scholar 

  24. M. Zábransky, V. Rüzicka, Jr., V. Majer, and E. S. Domalski, Heat Capacity of Liquids: Vols. I, II (Woodbury, (J. of Phys. and Chem. Ref. Data, Monograph 6 (ACS) 1996).

  25. D. R. Lide, Handbook of Organic Solvents, (CRC Press, Boca Raton, FL, 1995).

    Google Scholar 

  26. R. Schmid, J. Solution Chem. 12, 135 (1983).

    Google Scholar 

  27. Barthel, ed., Eldar Data Bank, (Phys. Chemie, Berlin, 1990).

  28. G. W. Canters, J. Am Chem. Soc. 94, 5230 (1972).

    Google Scholar 

  29. M. A. Villamañan, C. Casanova, G. Roux-Desgranges, and J.-P. Grolier, Thermochim. Acta 52, 279 (1982).

    Google Scholar 

  30. L. M. Trejo, M. Costas, and D. Patterson, J. Chem. Soc. Faraday, Trans. 87, 3001 (1991).

    Google Scholar 

  31. W. J. Wallace, and A. L. Mathews, J. Chem. Eng. Data 9, 267 (1964).

    Google Scholar 

  32. R. L. McGee, J. Chem. Eng. Data 28, 305 (1983).

    Google Scholar 

  33. D. Fish, and J. Smid, Electrochim. Acta 37, 2043 (1992).

    Google Scholar 

  34. G. Perron, G. Trudeau, and J. E. Desnoyers, Can. J. Chem. 65, 1402 (1987).

    Google Scholar 

  35. I. Davidson, G. Perron, and J. E. Desnoyers, Can. J. Chem. 59, 2212 (1981).

    Google Scholar 

  36. J. Peleteiro, C.A. Tovar, R. Escudero, E. Carballo, J. L. Legido, and L. Roma J. Solution Chem. 22, 1005 (1993).

    Google Scholar 

  37. P. Svejda, M. A. Siddiqi, G. Hahn, and N. Christoph, J. Chem. Eng. Data 35, 47 (1990).

    Google Scholar 

  38. P. T. Tomkins and P. J. Turner, J. Chem. Eng. Data 21, 153 (1976).

    Google Scholar 

  39. J.-C. Justice, J. Solution Chem. 20, 1017 (1991).

    Google Scholar 

  40. J. Barthel, H. J. Gores, G. Scheer, and R. Wachter, Top. Curr. Chem. 111, 3 (1983).

    Google Scholar 

  41. J. Barthel, R. Gerber, and H.-J. Gores, Ber. Bunsenges. Phys. Chem. 88, 616 (1984).

    Google Scholar 

  42. J. F. Casteel and E. S. Amis, J. Chem. Eng. Data 17, 55 (1972).

    Google Scholar 

  43. U. Makoto, I. Kazuhiko, and M. Shoichiro, J. Electrochem. Soc. 141, 2989 (1994).

    Google Scholar 

  44. G. Perron, A. Hardy, J.-C. Justice, and J. E. Desnoyers, J. Solution Chem. 22, 1159 (1993).

    Google Scholar 

  45. M. Grotthus, Tilloch's Phil. Mag. 25, 334 (1806).

    Google Scholar 

  46. A. Reger, E. Peled, and E. Gileadi, J. Phys. Chem. 83, 873 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brouillette, D., Perron, G. & Desnoyers, J.E. Apparent Molar Volume, Heat Capacity, and Conductance of Lithium Bis(trifluoromethylsulfone)imide in Glymes and Other Aprotic Solvents. Journal of Solution Chemistry 27, 151–182 (1998). https://doi.org/10.1023/A:1022609407560

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022609407560

Navigation