Skip to main content
Log in

Strategies for Organizing Nanoparticles into Aggregate Structures and Functional Materials

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this review, we focus on some of the most successful approaches to date for organizing nanoparticles into macroscopic aggregates and functional materials. The preparation and resulting properties of two- and three-dimensional arrays of nanoparticles are detailed, and some potential uses for these materials are discussed. Although many types of nanoparticles can be organized into such structures, this review focuses specifically on Au and CdE (E=S, Se) nanoparticles. Gold nanoparticles are easily prepared, highly stable, well-studied, and excellent models for other metal colloids. CdE colloids are the most extensively studied semiconductor nanoparticles and hold much promise in the optoelectronics field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Weller (1996). Angew. Chem. Int. Ed. Engl. 35, 1079.

    Google Scholar 

  2. D. Bethell, M. Brust, D. J. Schiffrin, and C. Kiely (1996). J. Electroanal. Chem. 409, 137.

    Google Scholar 

  3. A. P. Alivisatos (1996). Science 271, 933.

    Google Scholar 

  4. J. R. Heath (1995). Science 270, 1315.

    Google Scholar 

  5. J. H. Fendler and F. C. Meldrum (1995). Adv Mater. 7, 607.

    Google Scholar 

  6. D. Bethell and D. J. Schiffrin (1996). Nature 382, 581.

    Google Scholar 

  7. Y. Wang and N. Herron (1991). J. Phys. Chem. 95, 525.

    Google Scholar 

  8. M. A. Hayat (ed.), Colloidal Gold: Principles, Methods, and Applications (Academic Press, San Diego, 1991).

    Google Scholar 

  9. A. P. Alivisatos (1996). J. Phys. Chem. 100, 13226.

    Google Scholar 

  10. H. Weller (1993). Angew. Chem. Int. Ed. Engl. 32, 41.

    Google Scholar 

  11. G. Schmid (ed.), Clusters and Colloids (VCH, Weinheim, 1994).

    Google Scholar 

  12. M. L. Steigerwald and L. E. Brus (1990). Acc. Chem. Res. 23, 183.

    Google Scholar 

  13. R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan (1995). Science 267, 1629.

    Google Scholar 

  14. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos (1994). Nature 370, 354.

    Google Scholar 

  15. U. Simon, G. Schön, and G. Schmid (1993). Angew. Chem. Int. Ed. Engl. 32, 250.

    Google Scholar 

  16. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff (1996). Nature 382, 607.

    Google Scholar 

  17. R. G. Freeman, M. B. Hommer, K. C. Grabar, M. A. Jackson, and M. J. Natan (1996). J. Phys. Chem. 100, 718.

    Google Scholar 

  18. J. A. Creighton, C. G. Blatchford, and M. G. Albrecht (1979). J. Chem. Soc. Faraday II 75, 790.

    Google Scholar 

  19. E. Amouyal and P. Koffi (1985). J. Photochem. Photobiol. A: Chem. 29, 227.

    Google Scholar 

  20. H. Gerischer and A. Heller (1992). J. Electrochem. Soc. 139, 113.

    Google Scholar 

  21. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman (1994). J. Chem. Soc., Chem. Comm. 801.

  22. B. V. Enüstün and J. Turkevich (1963). J. Am. Chem. Soc. 85, 3317.

    Google Scholar 

  23. C. S. Weisbecker, M. V. Merritt, and G. M. Whitesides (1996). Langmuir 12, 3763.

    Google Scholar 

  24. K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan (1995). Anal. Chem. 67, 735.

    Google Scholar 

  25. G. Frens (1973). Nature Phys. Sci. 241, 20.

    Google Scholar 

  26. C. B. Murray, D. J. Norris, and M. G. Bawendi (1993). J. Am. Chem. Soc. 115, 8706.

    Google Scholar 

  27. C. J. Murphy (1996). J. Cluster Sci. 7, 341.

    Google Scholar 

  28. A. J. Nozik, F. Williams, M. T. Nenadović, T. Rajh, and O. I. Mićić (1985). J. Phys. Chem. 89, 397.

    Google Scholar 

  29. M. L. Steigerwald, A. P. Alivisatos, J. M. Gibson, T. D. Harris, R. Kortan, A. J. Muller, A. M. Thayer, T. M. Duncan, D. C. Douglass, and L. E. Brus (1988). J. Am. Chem. Soc. 110, 3046.

    Google Scholar 

  30. L. Spanhel, M. Haase, H. Weller, and A. Henglein (1987). J. Am. Chem. Soc. 109, 5649.

    Google Scholar 

  31. S. Underwood and P. Mulvaney (1994). Langmuir 10, 3427.

    Google Scholar 

  32. M. Faraday (1857). M. Phil. Trans. R. Soc. Lond. 147, 145.

    Google Scholar 

  33. J. Turkevich, P. C. Stevenson, and J. Hillier (1951 ). J. Am. Chem. Soc. 73, 55.

    Google Scholar 

  34. M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, and C. Kiely (1995). J. Chem. Soc., Chem. Comm. 1655.

  35. P. Mulvaney and M. Giersig (1996). J. Chem. Soc., Faraday Trans. 92, 3137.

    Google Scholar 

  36. J. Kucyznski and J. K. Thomas (1982). Chem. Phys. Lett. 88, 445.

    Google Scholar 

  37. R. Rossetti, J. L. Ellison, J. M. Gibson, and L. E. Brus (1984). J. Chem. Phys. 80, 4464.

    Google Scholar 

  38. C. B. Murray, C. R. Kagan, and M. G. Bawendi (1995). Science 270, 1335.

    Google Scholar 

  39. G. Bar, S. Rubin, R. W. Cutts, T. N. Taylor, and T. A. Zawodzinski (1996). Langmuir 12, 1172.

    Google Scholar 

  40. J. Zhu, F. Xu, S. J. Schofer, and C. A. Mirkin (1997). J. Am. Chem. Soc. 119, 235.

    Google Scholar 

  41. G. Chumanov, K. Sokolov, B. W. Gregory, and T. M. Cotton (1995). J. Phys. Chem. 99, 9466.

    Google Scholar 

  42. A. J. Bard (1982). J. Phys. Chem. 86, 172.

    Google Scholar 

  43. D. Duonghong, J. Ramsden, and M. Grätzel (1982). J. Am. Chem. Soc. 104, 2977.

    Google Scholar 

  44. M. A. Fox, B. Lindig, and C.-C. Chen (1982). J. Am. Chem. Soc. 104, 5828.

    Google Scholar 

  45. R. Rossetti, S. M. Beck, and L. E. Brus (1982). J. Am. Chem. Soc. 104, 7322.

    Google Scholar 

  46. J. R. Darwenta and G. Porter (1981). J. Chem. Soc., Chem. Commun. 145.

  47. C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi (1996). Phys. Rev. Lett. 76, 1517.

    Google Scholar 

  48. R. L. Whetten, J. T. Khoury, M. M. Alvarez, S. Murthy, I. Vezmar, Z. L. Wang, P. W. Stephens, C. L. Cleveland. W. D. Luedtke, and U. Landman (1996). Adv. Mater. 8, 428.

    Google Scholar 

  49. P. C. Ohara, D. V. Leff, J. R. Heath, and W. M. Gelbart (1995). Phys. Rev. Lett. 75, 3466.

    Google Scholar 

  50. S. A. Harfenist, Z. L. Wang, M. M. Alvarez, I. Vezmar, and R. L. Whetten (1996). J. Phys. Chem. 100, 13904.

    Google Scholar 

  51. C. D. Bain and G. M. Whitesides (1989). Angew. Chem. Int. Ed. Engl. 28, 506.

    Google Scholar 

  52. L. H. Dubois and R. G. Nuzzo (1992). Annu. Rev. Phys. Chem. 43, 437.

    Google Scholar 

  53. A. Ulman. An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-assembly (Academic Press, Boston. 1991).

    Google Scholar 

  54. L. H. Dubois, B. R. Zegarski, and R. G. Nuzzo (1993). J. Chem. Phys. 98, 678.

    Google Scholar 

  55. P. V. Braun, P. Osenar, and S. I. Stupp (1996). Nature 380, 325.

    Google Scholar 

  56. M. Antonietti, E. Wenz, L. Bronstein, and M. Seregina (1995). Adv. Mater. 7, 1000.

    Google Scholar 

  57. A. Roescher and M. Möller (1995). Adv. Mater. 7, 151.

    Google Scholar 

  58. J. P. Spatz, A. Roescher, and M. Möller (1996). Adv. Mater. 8, 337.

    Google Scholar 

  59. N. Herron, J. C. Calabrese, W. E. Farneth, and Y. Wang (1993). Science 259, 1426.

    Google Scholar 

  60. T. Vossmeyer, G. Reck, B. Schulz, L. Katsikas, and H. Weller (1995). J. Am. Chem. Soc. 117, 12881.

    Google Scholar 

  61. T. Vossmeyer, G. Reck, L. Katsikas, E. T. K. Haupt, B. Schulz, and H. Weller (1995). Science 267, 1476.

    Google Scholar 

  62. G. S. H. Lee, D. C. Craig, I. Ma, M. L. Scudder, T. D. Bailey, and I. G. Dance (1988). J. Am. Chem. Soc. 110, 4863.

    Google Scholar 

  63. R. P. Andres, S. Datta, M. Dorogi, J. Gomez, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. Mahoney, R. F. Osifchin, R. Reifenberger, M. P. Samanta, and W. Tian (1996). J. Vac. Sci. Technol. A 14, 1178.

    Google Scholar 

  64. M. Brust, D. Bethell, D. J. Schiffrin, and C. Kiely (1995). Adv. Mater. 7, 795.

    Google Scholar 

  65. C. A. Neugebauer and M. B. Webb (1962). J. Appl. Phys. 33, 74.

    Google Scholar 

  66. J. E. Morris and T. J. Coutts (1977). Thin Solid Films 47, 3.

    Google Scholar 

  67. B. Barwinski (1985). Thin Solid Films 128, 1.

    Google Scholar 

  68. F. Eckstein (ed.), Oligonucleotides and Analogues, 1st Ed. (Oxford University Press, New York, 1991).

    Google Scholar 

  69. A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez, Jr., and P. G. Schultz (1996). Nature 382, 609.

    Google Scholar 

  70. S. R. Bigham and J. L. Coffer (1995). Coll. Surf. A: Physicodhem. Eng. Aspects 95, 211.

    Google Scholar 

  71. S. R. Bigham and J. L. Coffer (1992). J. Phys. Chem. 96, 10581.

    Google Scholar 

  72. J. L. Coffer, S. R. Bigham, R. F. Pinizzotto, and H. Yang (1992). Nanotechnology 3, 69.

    Google Scholar 

  73. R. Mahtab, J. P. Rogers, C. P. Singleton, and C. J. Murphy (1996). J. Am. Chem. Soc. 118, 7028.

    Google Scholar 

  74. R. Mahtab, J. P. Rogers, and C. J. Murphy (1995). J. Am. Chem. Soc. 117, 9099.

    Google Scholar 

  75. N. C. Seeman, J. Chen, S. M. Du, J. E. Mueller, Y. Zhang, T.-J. Fu, Y. Wang, H. Wang, and S. Zhang (1993). New J. Chem. 17, 739.

    Google Scholar 

  76. S. M. Du, B. Stollar, and N. C. Seeman (1995). J. Am. Chem. Soc. 117, 1194.

    Google Scholar 

  77. M. Giersig and P. Mulvaney (1993). J. Phys. Chem. 97, 6334.

    Google Scholar 

  78. M. Giersig and P. Mulvaney (1993). Langmuir 9, 3408.

    Google Scholar 

  79. V. L. Colvin, A. N. Goldstein, and A. P. Alivisatos (1992). J. Am. Chem. Soc. 114, 5221.

    Google Scholar 

  80. D. L. Allara and R. G. Nuzzo (1985). Langmuir 1, 45.

    Google Scholar 

  81. D. L. Allara and R. G. Nuzzo (1985). Langmuir 1, 52.

    Google Scholar 

  82. M. Brust, R. Etchenique, E. J. Calvo, and G. J. Gordillo (1996). J. Chem. Soc., Chem. Commun., 1949.

  83. K. C. Grabar, P. C. Smith, M. D. Musick, J. A. Davis, D. G. Walter, M. A. Jackson, A. P. Guthrie, and M. J. Natan (1996). J. Am. Chem. Soc. 118, 1148.

    Google Scholar 

  84. D. D. Popenoe, R. S. Deinhammer, and M. D. Porter (1992). Langmuir 8, 2521.

    Google Scholar 

  85. L. Feingold and J. T. Donnell (1979). Nature 278, 443.

    Google Scholar 

  86. S. Rubin, G. Bar, T. N. Taylor, R. W. Cutts, and T. A. Zawodzinski, Jr. (1996). J. Vac. Sci. Technol. A 14, 1870.

    Google Scholar 

  87. I. V. Aleksandrov, Y. S. Bobovich, V. G. Maslov, and A. N. Sidorov (1974). Opt. Spectrosc. 34, 467.

    Google Scholar 

  88. R. Kotz and E. Yeager (1980). J. Electroanal. Chem. 113, 113.

    Google Scholar 

  89. S. Peschel and G. Schmid (1995). Angew. Chem. Int. Ed. Engl. 34, 1442.

    Google Scholar 

  90. K. C. Grabar, K. J. Allison, B. E. Baker, R. M. Bright, K. R. Brown, R. G. Freeman, A. P. Fox, C. D. Keating, M. D. Musick, and M. J. Natan (1996). Langmuir 12, 2353.

    Google Scholar 

  91. N. A. Kotov, I. Dékány, and J. H. Fendler (1995). J. Phys. Chem. 99, 13065.

    Google Scholar 

  92. K. C. Yi and J. H. Fendler (1990). Langmuir 6, 1519.

    Google Scholar 

  93. Y. Tian and J. H. Fendler (1996). Chem. Mater. 8, 969.

    Google Scholar 

  94. R. S. Urquhart, D. N. Furlong, T. Gengenbach, N. J. Geddes, and F. Grieser (1995). Langmuir 11, 1127.

    Google Scholar 

  95. J. H. Fendler (1996). Chem. Mater. 8, 1616.

    Google Scholar 

  96. R. G. Osifchin, W. J. Mahoney, J. D. Bielefeld, R. P. Andres, J. I. Henderson, and C. P. Kubiak (1995). Superlattices and Microstructures 18, 283.

    Google Scholar 

  97. R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin (1996). Science 273, 1690.

    Google Scholar 

  98. D. B. Janes, V. R. Kolagunta, R. G. Osifchin, J. D. Bielefeld, R. P. Andres, J. I. Henderson, and C. P. Kubiak (1995). Superlatt. Microstruct. 18, 275.

    Google Scholar 

  99. R. P. Andres, T. Bein, M. Dorogi, S. Feng, J. I. Henderson, C. P. Kubiak, W. Mahoney, R. G. Osifchin, and R. Reifenberger (1996). Science 272, 1323.

    Google Scholar 

  100. S. M. Sze (ed.), Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  101. A. Henglein (1988). Top. Curr. Chem. 143, 112.

    Google Scholar 

  102. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin. Submitted as a report to Science.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Storhoff, J.J., Mucic, R.C. & Mirkin, C.A. Strategies for Organizing Nanoparticles into Aggregate Structures and Functional Materials. Journal of Cluster Science 8, 179–216 (1997). https://doi.org/10.1023/A:1022632007869

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022632007869

Navigation