Skip to main content
Log in

Molecular Interactions of Macrocycles with Dipeptides in Aqueous Solutions. Partial Molar Volumes and Heat Capacities of Transfer of a Chiral 18-Crown-6 and of a Calix[4]resorcinarene Derivative from Water to Aqueous Dipeptide Solutions at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Densities and specific heat capacities of ternary aqueous systems containing a dipeptide (alanyl-alanine, alanyl-glutamic acid, alanyl-serine or L-seryl-L-leucine) and a macrocycle (D-α-manno-naphtho-18-crown-6-ether or 2,8,14,20-tetrakis[-methyl (aminoformyl)]-4,6,10,12,16,18,22,24-octahydroxycalix[4]arene) were determined at 25°C by flow densimetry and flow calorimetry. The partial molar volume and heat capacity of transfer of a macrocycle from water to the dipeptide solution was determined as a function of the dipeptide concentration. Positive values for transfer volumes and transfer heat capacities are observed with all the solutions studied. With the crown ether, except for alanyl-glutamic acid where a 1:1 complex is clearly evidenced due to specific interactions of the side-chain functional group of the peptide with the crown ether, no stoichiometric complexes are confirmed and the partial molar quantities of transfer increase with the hydrophobic character of the dipeptide. Partial quantities of transfer are smaller with the calixarene than with the crown ether and stoichiometric complexes [calixarene]/[dipeptide] from 2:1 to 1:4 are evidenced, depending on the nature and the concentration of the dipeptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Voegtle, Supramolecular Chemistry: An Introduction, (Wiley Chichester, 1991).

  2. G. R. Desiraju, ed., Perspectives in Supramolecular Chemistry, Vol. 2, The Crystal as a Supramolecular Entity, (Wiley, Chichester, 1996).

    Google Scholar 

  3. J. M. Lehn, Supramolecular Chemistry; Concepts and Perspectives, (VCH, Weinheim, 1995).

    Google Scholar 

  4. J. H. Fuhrhop, and J. Koenig, in Membranes and Molecular Assemblies: The Synkinetic Approach, Monographs in Supramolecular Chemistry, J. F. Stoddart, ed. (The Royal Society of Chemistry, Cambridge, England, 1994).

    Google Scholar 

  5. J. M. Lehn, J. L. Atwood, J. E. D. Davies, D. D. MacNicol, and F. Voegtle, eds., Comprehensive Supramolecular Chemistry, Vols. 6, 7, and 9, (Pergamon, (Elsevier) 1996).

    Google Scholar 

  6. G. W. Gokel, Crown Ethers, Cryptands, Monographs in Supramolecular Chemistry, J. F. Stoddart) (The Royal Society of Chemistry, Cambridge, England, 1991).

    Google Scholar 

  7. C. D. Gutsche, in Calixarenes, Monographs in Supramolecular Chemistry, J.F. Stoddart, ed. (The Royal Society of Chemistry, Cambridge, England, 1989).

    Google Scholar 

  8. J. Vicens and V. Boehmer, in Calixarenes: A Versatile Class of Macrocyclic Compounds, Topics in Inclusion Science, J. E. D. Davies, ed., (Kluwer Academic Publishers, 1991).

  9. H. Kataoka and T. Katagi, Tetrahedron 43, 5419 (1987).

    Google Scholar 

  10. J. P. Joly and B. Gross, Tetrahedron Lett. 30, 4231 (1989).

    Google Scholar 

  11. J. M. Lehn, J. Simon, and A. Modrapour, Helv. Chim. Acta 61, 2407 (1978).

    Google Scholar 

  12. P. Holy, W. E. Morf, K. Seiler, W. Simon, and J-P. Vigneron, Helv. Chim. Acta 73, 171 (1990).

    Google Scholar 

  13. C. Y. Zhu, R. M. Izatt, J. S. Bradshaw, and N. K. Dalley, J. Inclusion Phenom. Mol. Recognit. Chem. 13, 17 (1992).

    Google Scholar 

  14. H. Tsukube, J. Uenishi, H. Higaki, and K. Kikkawa, Chem. Lett. 2, 2307, (1992).

    Google Scholar 

  15. L. Echegoyen, M. V. Martinez-Diaz, J. de Mendoza, and M. J. Vicente-Arana, Tetrahedron 48, 9545 (1992).

    Google Scholar 

  16. K. Maruyama, H. Sohmiya, and H. Tsukube, Tetrahedron 48, 805 (1992).

    Google Scholar 

  17. R. Kuhn, F. Erni, T. Bereuter, and J. Hausler, Anal. Chem. 64, 2815 (1992).

    Google Scholar 

  18. M. Sawada, Y. Okumura, H. Yamada, Y. Takai, S. Takahashi, T. Kaneda, K. Hirose, and S. Misumi, Org. Mass. Spectr. 28, 1525 (1993).

    Google Scholar 

  19. S. Boudouche, C. Coquelet, L. Jacquet, C. Marzin, R. Sandeaux and G. Tarrago, J. Inclusion Phenom. Mol. Recognit. Chem. 16, 69 (1993).

    Google Scholar 

  20. J. S. Bradshaw, P. Huszthy, T. Wang, C. Zhu, A. Y. Nazarenko, and R. M. Izatt, Supramol. Chem. 1, 267 (1993).

    Google Scholar 

  21. T. Shinbo, T. Yamaguchi, H. Yanagishita, K. Sakaki, D. Kitamoto, and M. Sugiura, J. Membr. Sci. 84, 241 (1993).

    Google Scholar 

  22. B. Dumont, M. F. Schmitt, and J. P. Joly, Tetrahedron Lett. 35, 4773 (1994).

    Google Scholar 

  23. J. P. Joly, M. Nazhaoui, and B. Dumont, Bull. Soc. Chim. Fr. 131, 369 (1994).

    Google Scholar 

  24. M. V. Martinez-Diaz, J. de Mendoza, and T. Torres, Tetrahedron Lett. 35, 7669 (1994).

    Google Scholar 

  25. M. Okamoto, K. I. Takahashi, and T. Doi, J. Chromatogr. A 675, 244 (1994).

    Google Scholar 

  26. R. Kuhn, C. Steinmetz, T. Bereuter, P. Haas, and F. Erni, J. Chromatogr. A 666, 367 (1994).

    Google Scholar 

  27. M. Pietraszkiewicz, J. Inclusion Phenom. 5, 177 (1987).

    Google Scholar 

  28. J. Zukowski, M. Pawlowska, and M. Pietraskiewicz, Chromatographia 32, 82 (1991).

    Google Scholar 

  29. M. Pietraszkiewicz and N. Spencer, J. Coord. Chem. 27, 115 (1992).

    Google Scholar 

  30. M. Pietraszkiewicz and M. Koybia, J. Inclusion. Phenom. Mol. Recognit. Chem. 14, 339 (1992).

    Google Scholar 

  31. A. V. Eliseev and H. J. Schneider, J. Am. Chem. Soc. 116, 6081 (1994).

    Google Scholar 

  32. J.M. Coteron, C. Vicent, and S. Penades, J. Am. Chem. Soc. 115, 10066 (1993).

    Google Scholar 

  33. V. Schurig and H. P. Nowotny, J. Chromatogr. 441, 155 (1988).

    Google Scholar 

  34. G. Stoev, J. Chromatogr. 589, 257 (1992).

    Google Scholar 

  35. I. D. Smith and C. F. Simpson, J. High Resol. Chromatogr. 15, 800 (1992).

    Google Scholar 

  36. T. Reiher and H. J. Hamann, J. High Resol. Chromatogr. 15, 346 (1992).

    Google Scholar 

  37. C. Bicchi, G. Artuffo, A. D'Amato, V. Manzin, A. Galli, and M. Galli, J. High Resol. Chromatogr. 16, 209 (1993).

    Google Scholar 

  38. D. W. Armstrong, W. Li, C. D. Chang, and J. Pitha, Anal. Chem. 62, 914 (1990).

    Google Scholar 

  39. E. Smolkova-Keulemansova, S. Pokorna, L. Feltl, and K. Tesarik, J. High Resol. Chromatogr. 11, 670 (1988).

    Google Scholar 

  40. D. Schmalzing, M. Jung, S. Mayer, J. Rickert, and V. Schurig, J. High Resol. Chromatogr. 15, 723 (1992).

    Google Scholar 

  41. M. Jung and V. Schurig, J. High Resol. Chromatogr. 16, 289 (1993).

    Google Scholar 

  42. W. A. Koenig and B. Gehrcke, J. High Resol. Chromatogr. 16, 175 (1993).

    Google Scholar 

  43. W.Y. Li, L. Jin, and D. W. Armstrong, J. Chromatogr. 509, 303 (1990).

    Google Scholar 

  44. M. Jung and V. Schurig, J. High Resol. Chromatogr. 16, 215 (1993).

    Google Scholar 

  45. A. Mosandl, J. Chromatogr. A 624, 267 (1992).

    Google Scholar 

  46. G. Fuchs and M. Perrut, J. Chromatogr. A 658, 437 (1994).

    Google Scholar 

  47. F. Kobor, K. Angermund, and G. Schomburg, J. High Resol. Chromatogr. 16, 299 (1993).

    Google Scholar 

  48. R. J. Tait, D. O. Thompson, V. J. Stella, and J. F. Stobaugh, Anal. Chem. 66, 4013 (1994).

    Google Scholar 

  49. I. S. Lurie, Anal. Chem. 66, 4019(1994).

    Google Scholar 

  50. S. G. Penn, E. T. Bergstroem, and D. M. Goodall, Anal. Chem. 66, 2866 (1994).

    Google Scholar 

  51. K. Naemura, T. Mizo-oku, K. Kamada, K. Hirose, Y. Tobe, M. Sawada, and Y. Takai, Tetrahedron: Asym. 5, 1549 (1994).

    Google Scholar 

  52. K. Ito, Y. Ohba, and T. Sone, Chem. Lett. 3, 183 (1996).

    Google Scholar 

  53. K. Suwinska, Acta Cryst. C46, 631 (1990).

    Google Scholar 

  54. P. Picker, E. Tremblay, and C. Jolicoeur, J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  55. P. Picker, P. A. Leduc, P. P. Philip, and J. E. Desnoyers, J. Chem. Thermodyn. 3, 631 (1971).

    Google Scholar 

  56. A. Zielenkiewicz, K. Busserolles, G. Roux-Desgranges, A.H. Roux, J-P. E. Grolier, and W. Zielenkiewicz, J. Solution Chem. 24, 623 (1995).

    Google Scholar 

  57. C. Jolicoeur and J. Boileau, Can. J. Chem. 56, 2707 (1978).

    Google Scholar 

  58. O. V. Kulikov, K. A. Koslov, L. I. Malenkina, and V.S. Badelin, eds., Thermodynamics of Nonelectrolyte Solutions (in Russian) (Academy of Sciences USSR, Institute of Chemistry of Nonaqueos Solutions, Ivanovo, (1989), p. 36.

    Google Scholar 

  59. J. F. Reading and G. R. Hedwig, J. Chem. Soc. Faraday Trans. 86, 3117 (1990).

    Google Scholar 

  60. G. R. Hedwig, J. Chem. Soc. Faraday Trans. 89, 2761 (1993).

    Google Scholar 

  61. G. Cabani, P. Gianni, V. Mollica, and L. Lepori, J. Solution Chem. 10, 563 (1981).

    Google Scholar 

  62. G. W. Gokel, Adv. Supramol. Chem., Vol. 1, (JAI Press, New York 1990).

    Google Scholar 

  63. Y. Kikuchi, Y. Tanaka, S. Sutarto, K. Kobayashi, H. Toi, and Y. Aoyama, J. Am. Chem. Soc. 114, 10302 (1992).

    Google Scholar 

  64. K. Kobayashi, Y. Asakawa, Y. Kato, and Y. Aoyama, J. Am. Chem. Soc. 114, 10307 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zielenkiewicz, W., Pietraszkiewicz, O., Wszelaka-Rylik, M. et al. Molecular Interactions of Macrocycles with Dipeptides in Aqueous Solutions. Partial Molar Volumes and Heat Capacities of Transfer of a Chiral 18-Crown-6 and of a Calix[4]resorcinarene Derivative from Water to Aqueous Dipeptide Solutions at 25°C. Journal of Solution Chemistry 27, 121–134 (1998). https://doi.org/10.1023/A:1022653222581

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022653222581

Navigation