Photosynthetica 2002, 40(3):331-335 | DOI: 10.1023/A:1022658504882

Effects of Simulated Acid Precipitation on Photosynthesis, Chlorophyll Fluorescence, and Antioxidative Enzymes in Cucumis sativus L.

Jing-Quan Yu1, Su-Feng Ye1, Li-Feng Huang1
1 Department of Horticulture, Huajiachi Campus, Zhejiang University, Hangzhou, China

The effects of simulated acid rain on gas exchange, chlorophyll fluorescence, and anti-oxidative enzyme activity in cucumber seedlings (Cucumis sativus L. cv. Jingchun No. 4) were investigated. Acid rain significantly reduced net photosynthetic rate and mainly non-stomatal factors contributed to the decrease of photosynthesis during the experimental period. The reduced photosynthesis was associated with a decreased maximal photochemical efficiency (Fv/Fm) and the average quantum yield of the photosystem 2 (PS2) reaction centres (ΦPS2). Meanwhile, acid rain significantly increased the activities of guaiacol peroxidase (GPX) and superoxide dismutase (SOD), but decreased the activity of catalase (CAT) together with an increased content of malonyldialdehyde (MDA), Hence the changes in photosynthesis in acid rain treatment might be a secondary effect of acidity damage probably due to lipid peroxidation of lipids and proteins in thylakoid membrane rather than direct effect on PS2 reaction centre.

Additional key words: acid rain; catalase; chlorophyll fluorescence; guaiacol peroxidase; lipid peroxidation; malonyldialdehyde; net photosynthetic rate; photosystem 2; superoxide dismutase

Published: September 1, 2002  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Yu, J., Ye, S., & Huang, L. (2002). Effects of Simulated Acid Precipitation on Photosynthesis, Chlorophyll Fluorescence, and Antioxidative Enzymes in Cucumis sativus L. Photosynthetica40(3), 331-335. doi: 10.1023/A:1022658504882
Download citation

References

  1. Amthor, J.S.: Does acid rain directly influence plant growth? Some comments and observations.-Environ. Pollut. 36: 1-6, 1984. Go to original source...
  2. Ashenden, T.W., Bell, S.A.: Growth responses of three legume species exposed to simulated acid rain.-Environ. Pollut. 62: 21-29, 1989. Go to original source...
  3. Beauchamp, C., Fridovich, I.: Superoxide dismutase improved assay and an assay applicable to acrylamide gas.-Anal. Biochem. 44: 276-278, 1971. Go to original source...
  4. Bowler, C., van Montagu, M., Inze, D.: Superoxide dismutase and stress tolerance.-Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 83-116, 1992. Go to original source...
  5. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248-254, 1976. Go to original source...
  6. Cakmak, I., Marschner, H.: Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves.-Plant Physiol. 98: 1222-1227, 1991. Go to original source...
  7. Castillo, F.J., Miller, P.R., Greppin, H.: Extracellular biochemical markers of phtochemical oxidant air pollution damage to Norway spruce.-Experientia 43: 111-115, 1987. Go to original source...
  8. Chen, Y.M., Lucas, P.W., Wellburn, A.R.: Relationship between foliar injury and changes in antioxidant levels in red and Norway spruce exposed to acidic mists.-Environ. Pollut. 69: 1-15, 1991. Go to original source...
  9. Darrall, N.M.: The effect of air pollutants on physiological processes in plants.-Plant Cell Environ. 12: 1-30, 1989. Go to original source...
  10. Elstner, E.F., Wagner, G.A., Schultz., W.: Activated oxygen in green plants in relation to stress situations.-Curr. Topics Plant Biochem. Physiol. 7: 159-187, 1988.
  11. Endress, A.G., Suarez, S.J., Taylor, O.C.: Peroxidase activity in plant leaves exposed to gaseous HCl or ozone.-Environ. Pollut. 22: 47-58, 1980. Go to original source...
  12. Evans, L.S.: Biological effects of acidity in precipitation on vegetation: a review.-Environ. exp. Bot. 22: 155-169, 1982. Go to original source...
  13. Ferenbaugh, R.W.: Effects of simulated acid rain on Phaseolus vulgaris L. (Fabaceae).-Amer. J. Bot. 63: 283-288, 1976. Go to original source...
  14. Gossett, D.R., Millhollon, E.P., Lucas, C.: Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton.-Crop Sci. 34: 706-714, 1994. Go to original source...
  15. Hogan, G.D.: Effect of simulated acid rain on physiology, growth and foliar nutrient concentrations of sugar maple.-Chemosphere 36: 633-638, 1998. Go to original source...
  16. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: The basics.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313-349, 1991. Go to original source...
  17. Lee, J.J., Neely, G.E., Perrigan, S.C., Grothaus, L.C.: Effect of simulated sulfuric acid rain on yield, growth and foliar injury of several crops.-Environ. exp. Bot. 21: 171-185, 1981. Go to original source...
  18. Liu, H., Zhang, W., Tou, X.: Relationship between acid rain and the decline of a massion pine forest in nanshan, chongqing.-Acta Sci. Circumstantiae 8: 331-337, 1988.
  19. Markkola, A.M., Ohtonen, R., Tarvainen, O.: Peroxidase activity as an indicator of pollution stress in the fine roots of Pinus sylvestris.-Water Air Soil Pollut. 52: 149-156, 1990. Go to original source...
  20. Muthuchelian, K., Nedunchezhian, N., Kulandaivelu, G.: Effect of simulated acid rain on 14CO2 fixation, ribulose-1,5-bisphosphate carboxylase and nitrate and nitrite reductases in Vigna sinensis and Phaseolus mungo.-Photosynthetica 28: 361-367, 1993.
  21. Neufeld, H.S., Jernstedt, J.A., Haines, B.L.: Direct foliar effects of simulated acid rain. I. Damage, growth and gas exchange.-New Phytol. 99: 389-405, 1985. Go to original source...
  22. Porter, P.M., Bantwart, W.L., Hassett, J.J., Fink, R.L.: Effects of simulated acid rain on yield response of two soybean cultivars.-J. environ. Qual. 16: 433-437, 1987. Go to original source...
  23. Seufert, G., Hoyer, V., Wollmer, H., Arndt, U.: The Hohenheim long-term experiment. General methods and material.-Environ. Pollut. 68: 205-229, 1990. Go to original source...
  24. Shan, Y., Feng, Z., Izuta, T., Aoki, M., Totsuka, T.: The individual and combined effects of ozone and simulated acid rain on chlorophyll contents, carbon allocation and biomass accumulation of Armand pine seedlings.-Water Air Soil Pollut. 85: 1399-1404, 1995. Go to original source...
  25. Shan, Y., Feng, Z, Izuta, T., Aoki, M., Totsuka, T.: The individual and combined effects of ozone and simulated acid rain on growth, gas exchange rate and water-use efficiency of Pinus armandi Franch.-Environ. Pollut. 91: 355-361, 1996. Go to original source...
  26. Shumijko, P., Ossipov, V., Neuvonen, S.: The effects of simulated acid rain on the biochemical composition of Scots pine (Pinus sylvestris L.) needles.-Environ. Pollut. 92: 315-321, 1996. Go to original source...
  27. ©iffel, P., Braunová, Z., ©indelková, E., Cudlín, P.: The effect of simulated acid rain on chlorophyll fluorescence spectra in seedlings of Picea abies. L.-J. Plant Physiol. 149: 271-275, 1996. Go to original source...
  28. Takemoto, B.K.: Physiological responses of soybean (Glycine max L. Merr) to simulated acid rain and ambient ozone in the field. Water.-Air Soil Pollut. 33: 373-384, 1987. Go to original source...
  29. Turunen, M., Huttunen, S., Percy, K.E., McLaughlin, C.K., Lamppu, J.: Epicular wax of subartic Scots pine needles-responses to sulfur and heavy metal deposition.-New Phytol. 135: 501-515, 1997. Go to original source...
  30. Velikova, V., Tsonev, T., Yordanov, I.: Light and CO2 responses of photosynthesis and chlorophyll fluorescence characteristics in bean plants after simulated acid rain.-Physiol. Plant. 107: 77-83, 1999. Go to original source...
  31. Velikova, V., Yordanov, I., Edreva, A.: Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines.-Plant Sci. 151: 59-66, 2000. Go to original source...
  32. Yu, J.Q., Matsui, Y.: Effects of root exudates and allelochemical on ion uptake by cucumber seedling.-J. chem. Ecol. 23: 817-827, 1997. Go to original source...
  33. Yu, J.Q., Zhou, Y.H., Ye, S.F., Huang, L.F.: 24-epibrassinolide and abscisic acid protect cucumber seedlings from chilling injury.-J. hort. Sci. Biotechnol., in press, 2002. Go to original source...