Skip to main content
Log in

The Comparative Biology of Whey Proteins

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Lactational strategies and associated development of the young have been studied in a diverse range of species, and comparative analysis allows common trends and differences to be revealed. The whey fraction contains a vast number of proteins, many of which have not been assigned a function. However, it is expected that an understanding of the comparative biology of these proteins may provide some promise in assigning a function to the major whey proteins. Whey acidic protein is a major component of the whey fraction that has been studied across a range of species, revealing conservation of gene structure, whereas regulation and temporal expression patterns vary. This review focuses primarily on comparative analysis of whey acidic protein, highlighting gene structure, developmental and hormonal regulation, and potential functional roles for this protein. In addition, the contrasting regulation and secretion profiles of several other major whey proteins are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. J. Topper and C. S. Freeman (1980). Multiple hormone inter-actions in the developmental biology of the mammary gland. Physiol.Rev. 60(4): 1049–1106.

    PubMed  Google Scholar 

  2. M. Li, H. Jiadi, K. Heermeier, L. Hennighausen, and P. A. Furth (1996). Apoptosis and remodeling of mammary gland tissue during involution proceeds through p53 independent pathways. Cell Growth Diff. 7: 13–20.

    PubMed  Google Scholar 

  3. O. T. Oftedal and S. J. Iverson (1995). Comparative analysis of nonhuman milks. In R. G. Jensen (ed.), Handbook of Milk Composition, Academic Press, New York, pp. 749–788.

    Google Scholar 

  4. J. C. Mercier and J. L. Vilotte. 1993 Structure and function of milk protein genes. J.Dairy Sci. 76: 3079–3098.

    PubMed  Google Scholar 

  5. M. R. Ginger and M. R. Grigor (1999). Comparative aspects of milk caseins. Comp.Biochem.Phys. 124B: 133–145.

    Google Scholar 

  6. J. Demmer, S. J. Stasiuk, M. R. Grigor, K. J. Simpson, and K. R. Nicholas (2001). Differential expression of the whey acidic protein gene during lactation in the brushtail possum (Trichosurus vulpecula). Biochim.Biophys.Acta 1522: 187–194.

    PubMed  Google Scholar 

  7. L. H. Hennighausen and A. E. Sippel (1982). Mouse whey acidic protein is a novel member of the family of “four-disulphide core” proteins. Nucleic Acids Res. 10: 2677–2684.

    PubMed  Google Scholar 

  8. L. G. Hennighausen, A. E. Sippel, A. A. Hobbs, and J. M. Rosen (1982). Comparative sequence analysis of the mRNAs coding for mouse and rat whey acidic protein. Nucleic Acids Res. 10 (12): 3733–3744.

    PubMed  Google Scholar 

  9. A. M. Dandekar, E. A. Robinson, E. Appella, and P. K. Qasba (1982). Complete sequence analysis of cDNA clones encoding rat whey phosphoprotein: Homology to a protease inhibitor. Proc.Natl.Acad.Sci.U.S.A. 79: 3987–3991.

    PubMed  Google Scholar 

  10. O. U. Beg, H. Von Bahr-Lindstrom, Z. H. Zaidi, and H. Jornvall (1986). Acamel milk wheyprotein rich in half-cysteine: Primary structure, assessment of variations, internal repeat patterns, and relationships with neurophysin and other active polypeptides. Eur.J.Biochem. 159: 195–201.

    PubMed  Google Scholar 

  11. E. Devinoy, C. Hubert, E. Schaerer, L. M., Houdebine, and J. P. Kraehenbuhl (1988). Sequence of the rabbit whey acidic protein cDNA. Nucleic Acids Res. 16(16): 8180.

    PubMed  Google Scholar 

  12. K. J. Simpson, P. H. Bird, D. C. Shaw, and K. R. Nicholas (1998). Molecular characterization and hormone-dependent expression of the porcine whey acidic protein gene. J.Mol.Endocrinol. 20: 27–35.

    PubMed  Google Scholar 

  13. K. J. Simpson, S. Ranganathan, J. A. Fisher, P. A. Janssens, D. C. Shaw, and K. R. Nicholas (2000). The gene for a novel member of the whey acidic protein family encodes three four-disulfide core domains and is asynchronously expressed during lactation. J.Biol.Chem. 275(30): 23071–23081.

    Google Scholar 

  14. S. Ranganathan, K. J. Simpson, D. C. Shaw, and K. R. Nicholas (2000). The whey acidic protein family: A new signature motif and three-dimensional structure by comparative modeling. J.Mol.Graph.Model. 17 (4): 106–113.

    Google Scholar 

  15. T. N. Dear and F. Kefford (1991). The WDNM1 gene product is a novel member of the “four-disulphide core” family of proteins. Biochem.Biophys.Res.Comm. 176 (1): 247–254.

    PubMed  Google Scholar 

  16. B. W. Morrison and P. Leder (1994). Neu and ras initiate murine mammary tumours that share genetic markers generally absent in c-myc and int-2 initiated tumours. Oncogene 9 (12): 3417–3426.

    PubMed  Google Scholar 

  17. R. Wilson, R. Ainscough, K. Anderson, C. Baynes, M. Berks, J. Bonfield, J. Burton, M. Connell, T. Copsey, J. Cooper, A. Coulson, M. Craxton, S. Dear, Z. Du, R. Durbin, A. Favello, A. Fraser, L. Fulton, A. Gardner, P. Green, T. Hawkins, L. Hillier, M. Jier, L. Johnston, M. Jones, J. Kershaw, J. Kirsten, N. Laisster, P. Latrille, J. Lightning, C. Lloyd, B. Mortimore, M. O'Callaghan, J. Parsons, C. Percy, L. Rifken, A. Roopra, D. Saunders, R. Shownkeen, M. Sims, N. Smaldon, A. Smith, M. Smith, E. Sonnhammer, R. Staden, J. Sulston, J. Thierry-Mieg, K. Thomas, M. Vaudin, K. Vaughan, R. Waterson, A. Watson, L. Weinstock, J. Wilkinson-Sproat, and P. Wohldman (1994) 2.2 Mb of contiguous nucleotide sequence from chromosome III of C.elegans. Nature 368: 32–38.

    PubMed  Google Scholar 

  18. L. Stein, P. Sternberg, R. Durbin, J. Thierry-Mieg, and J. Spieth J. (2001). WormBase: Network access to the genome and biology of Caenorhabditis elegans. Nucleic Acids Res. 29(1): 82–86.

    PubMed  Google Scholar 

  19. M. Larsen, S. J. Ressler, M. J. Gerdes, B. Lu, M. Byron, J. B. Lawrence, and D. R. Rowley (2000). The WFDC1 gene encoding ps20 localizes to 16q24, a region of LOHin multiple cancers. Mamm.Genome 11: 767–773.

    PubMed  Google Scholar 

  20. M. Larsen, S. J. Ressler, B. Lu, M. J. Gerdes, L. McBride, T. D. Dang, and D. R. Rowley (1998). Molecular cloning and expression of ps20 growth inhibitor: A novel WAP type “four-disulphide core” domain protein expressed in smooth muscle. J.Biol.Chem. 273(8):4574–4584.

    PubMed  Google Scholar 

  21. C. Kirchhoff, I. Habben, R. Ivell, and N. Krull (1991). A major human epididymis specific cDNA encodes a protein with sequence homology to extracellular proteinase inhibitors. Biol. Reprod. 45: 350–357.

    PubMed  Google Scholar 

  22. K. Ellerbrock, I. Pera, S. Hartung, and R. Ivell (1994). Gene ex-pression in the dog epididymis: Amodel for human epididymal function. Int.J.Androl. 17(6):314–323.

    PubMed  Google Scholar 

  23. W. D. Xu, L. F. Wang, S. Y. Miao, M. Zhao, H. Y. Fan, S. D. Zong, Y. W. Wu, Z. Q. Shi, and S. S. Koide (1996). Identification of a rabbit epididymal protein gene. Arch.Androl. 37: 135–141.

    PubMed  Google Scholar 

  24. L. Bingle, V. Singleton, and C. D. Bingle (2002). The putative ovarian tumour marker gene HE4 (WFDC2), is expressed in normal tissues and undergoes complex alternative splicing to yield multiple protein isoforms. Oncogene 21: 2768–2773.

    PubMed  Google Scholar 

  25. M. Schummer, W. V. Ng, R. E. Bumgarner, P. S. Nelson, B. Schummer, D. W. Bednarski, L. Hassell, R. L. Baldwin, B. Y. Karlan, and L. Hood (1999). Comparative hybridization of an array of 21 500 ovarian cDNAs for the discovery of genes over-expressed in ovarian carcinomas. Gene 238: 375–385.

    PubMed  Google Scholar 

  26. S. M. Campbell, J. M. Rosen, L. G. Hennighausen, U. Strech-Jurk, and A. E. Sippel (1984). Comparison of the whey acidic protein genes of the rat and mouse. Nucleic Acids Res. 12: 8685–8697.

    PubMed  Google Scholar 

  27. D. Thepot, E. Devinoy, M. L. Fontaine, C. Hubert, and L. M. Houdebine (1990). Complete sequence of the rabbit whey acidic protein gene. Nucleic Acids Res. 18(12): 3641.

    PubMed  Google Scholar 

  28. S. Rival, J. Attal, C. Deville-Giraud, M. Yerle, P. Laffont, C. Rogel-Faillard, and L. M. Houdebine (2001). Cloning, transcription and chromosomal localization of the porcine whey acidic protein and its expression in HC11 cell line. Gene 267: 37–47.

    PubMed  Google Scholar 

  29. T. Malewski (1998). Computer analysis of distribution of putative cis-and trans-regulatory elements in milk protein gene promoters. BioSystems 45: 29–44.

    PubMed  Google Scholar 

  30. J. M. Rosen, S. L. Wyszomierski, and D. Hadsell (1999). Regulation of milk protein gene expression. Ann.Rev.Nutr. 19: 407–436.

    Google Scholar 

  31. X. Liu, G. W. Robinson, F. Gouilleux, B. Groner, and L. Hennighausen (1995). Cloning and expression of Stat5 and an additional homolog (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc.Natl.Acad.Sci. U.S.A. 92: 8831–8835.

    PubMed  Google Scholar 

  32. X. Liu, G. W. Robinson, K. U. Wagner, L. Garrett, A. Wynshaw-Boris, and L. Hennighausen (1997). Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 11: 179–186.

    PubMed  Google Scholar 

  33. C. W. Pittius, S. Sankaran, Y. Topper, and L. Hennighausen (1988). Comparison of the regulation of the whey acidic protein gene to a hybrid gene containing the whey acidic protein gene promoter in transgenic mice. Mol.Endocrinol. 2: 1027–1032.

    PubMed  Google Scholar 

  34. A. A. Hobbs, D. A. Richards, D. J. Kessler, and J. M. Rosen (1982). Complex hormonal regulation of rat casein gene ex-pression. J.Biol.Chem. 257(7):3598–3605.

    PubMed  Google Scholar 

  35. E. Devinoy, C. Hubert, G. Jolivet, D. Thepot, N. Clergue, M. Desaleux, M. Dion, J. L. Servely, and L. M. Houdebine (1988). Recent data on the structure of rabbit milk protein genes and on the mechanism of the hormonal control of their expression. Reprod.Nutr.Dev. 28: 1145–1164.

    PubMed  Google Scholar 

  36. K. Nicholas, K. Simpson, M. Wilson, J. Trott, and D. Shaw (1997). The Tammar wallaby: A model to study putative autocrine-induced changes in milk composition. J.Mam.Gland Biol.Neoplasia 2(3): 299–310.

    Google Scholar 

  37. J. Demmer, I. K. Ross, M. R. Ginger, C. K. Piotte, and M. R. Grigor (1998). Differential expression of milk protein genes during lactation in the common brushtail possum (Trichosurus vulpecula). J.Mol.Endocrinol. 20: 37–44.

    PubMed  Google Scholar 

  38. T. Burdon, R. J. Wall, A. Shamay, G. H. Smith, and L. Hennighausen (1991). Over-expression of an endogenous milk protein gene in transgenic mice is associated with impaired mammary alveolar development and a milchlos phenotype. Mech.Dev. 36: 67–74.

    PubMed  Google Scholar 

  39. T. Burdon, L. Sankaran, R. J. Wall, M. Spencer, and L. Hennighausen (1991). Expression of a whey acidic protein transgene during mammarydevelopment—Evidence for different mechanisms of regulation during pregnancy and lactation. J.Biol.Chem. 266(11):6909–6914.

    PubMed  Google Scholar 

  40. E. M. Bayna and J. M. Rosen (1990). Tissue-specific, high level expression of the rat whey acidic protein gene in transgenic mice. Nucleic Acids Res. 18(10):2977–2985.

    PubMed  Google Scholar 

  41. R. A. McKnight, A. Shamay, L. Sankaran, R. J. Wall, and L. Hennighausen (1992). Matrix-attachment regions can impart position-independent regulation of a tissue-specific gene in transgenic mice. Proc.Natl.Acad.Sci.U.S.A. 89: 6943–6947.

    PubMed  Google Scholar 

  42. R. Bischoff, E. Degryse, F. Perraud, W. Dalemans, S. Ali-Hadji, D. Thepot, E. Devinoy, L. M. Houdebine, and A. Pavirani (1992). 17.6 kbp region located upstream of the rabbit WAP gene directs high level expression of a functional human protein variant in transgenic mouse milk. FEBS Lett. 305(3):265–268.

    PubMed  Google Scholar 

  43. B. Millot, M. L. Fontaine, D. Thepot, and E. Devinoy (2001). A distal region, hypersensitive to DNase1, plays a key role in reg-ulating rabbit whey acidic protein gene expression. Biochem.J. 359: 557–565.

    PubMed  Google Scholar 

  44. A. Shamay, V. G. Pursel, E. Wilkinson, R. J. Wall, and L. Hennighausen (1992). Expression of the whey acidic protein in transgenic pigs impairs mammary development. Transgenic Res. 1: 124–132.

    PubMed  Google Scholar 

  45. W. H. Velander, J. L. Johnson, R. L. Page, C. G. Russell, A. Subramanian, T. D. Wilkins, F. C. Gwazadauskas, C. Pittius, and W. N. Drohan (1992). High-level expression of a heterologous protein in the milk of transgenic swine using the cDNAen-coding human protein C. Proc.Natl.Acad.Sci.U.S.A. 89: 12003–12007.

    PubMed  Google Scholar 

  46. J. M. Limonta, F. O. Castro, R. Martinez, P. Puentes, B. Ramos, A. Aguilar, R. L. Lleonart, and J. de la Fuente (1995). Transgenic rabbits as bioreactors for production of human growth hormone. J.Biotech. 40: 49–58.

    Google Scholar 

  47. M. G. Grutter, F. Fendrich, R. Huber, and W. Bode (1988). The 2.5 ° A X-ray crystal structure of the acid-stable proteinase inhibitor from human mucous secretions analyzed in its complex with bovine alpha-chymotrypsin. EMBO 7: 345–351.

    Google Scholar 

  48. C. Francart, M. Dauchez, A. J. P. Alix, and G. Lippens (1997). Solution structure of R-elafin, a specific inhibitor of elastase. J.Mol.Biol. 268: 666–677.

    PubMed  Google Scholar 

  49. A. Robertson, G. S. MacColl, J. A. B. Nash, M. K. Boehm, S. J. Perkins, and P. G. Bouloux (2001). Molecular modeling and experimental studies of mutation and cell-adhesion sites in the fibronectin type III and whey acidic protein domains of human anosmin-1. Biochem.J. 357: 647–659.

    PubMed  Google Scholar 

  50. S. G. Hambling, A. S. McAlpine, and L. Sawyer (1992). ¯-Lactoglobulin. In P. F. Fox (ed.), Advanced Dairy Chemistry-1: Proteins, Elsevier Science, New York, pp. 141–190.

    Google Scholar 

  51. J. Godovac-Zimmermann (1988). The structural motif of ¯-lactoglobulin and retinol-binding protein: A basic framework for binding and transport of small molecules? Trends Biochem. Sci. 13: 64–66.

    PubMed  Google Scholar 

  52. S. Pervaiz and K. Brew (1986). Purification and characterization of the major whey proteins from the milks of the bottlenose dolphin (Tursiops truncatus), the Florida manatee (Trichechus manatus latirostris), and the beagle (Canis familiaris). Arch. Biochem.Biophys. 246: 846–854.

    PubMed  Google Scholar 

  53. D. R. Flower (1996). The lipocalin protein family: Structure and function. Biochem.J. 318: 1–14.

    PubMed  Google Scholar 

  54. M. D. Perez, L. Sanchez, P. Aranda, J. M. Ena, R. Oria, and M. Calvo (1992). Effect of ¯-lactoglobulin on the activity of pregastic lipase. A possible role for this protein in ruminant milk. Biochim.Biophys.Acta 1123: 151–155.

    PubMed  Google Scholar 

  55. A. Shamay, V. G. Pursel, R. J. Wall, and L. Hennighausen (1992). Induction of lactogenesis in transgenic virgin pigs: Evidence for gene and integration site-specific hormonal regulation. Mol. Endocrinol. 6(2): 191–197.

    PubMed  Google Scholar 

  56. S. C. Dodd, I. A. Forsyth, H. L. Buttle, M. I. Gurr, and R. R. Dils (1994). Hormonal induction of ®-lactalbumin and ¯-lactoglobulin in cultured mammary explants from pregnant pigs. Dairy Res. 61: 35–45.

    Google Scholar 

  57. R. Osborne, M. Howell, A. J. Clark, and K. R. Nicholas (1995). Hormone-dependent expression of the ovine ¯-lactoglobulin gene. J: Dairy Res. 56: 321–329.

    Google Scholar 

  58. P. E. Hartmann (1973). Changes in the composition and yield of the mammary secretion of cows during the initiation of lac-tation. J.Endocrinol. 59: 231–247.

    PubMed  Google Scholar 

  59. W. L. Hurley and J. J. Rejman (1986). ¯-Lactoglobulin and ®-lactalbumin in mammary secretions during the dry period: Par-allelism of concentration changes. J.Dairy Sci. 69: 1642–1647.

    PubMed  Google Scholar 

  60. T. G. Burdon, K. A. Maitland, A. J. Clark, R. Wallace, and C. J. Watson (1994). Regulation of the sheep ¯-lactoglobulin gene by lactogenic hormones is mediated by a transcription factor that binds and interferon-g activation site-related element. Mol. Endocrinol. 8: 1528–1536.

    PubMed  Google Scholar 

  61. J. P. Simons, M. McClenaghan, and A. J. Clark (1987). Alteration of the quality of milk by expression of sheep ¯-lactoglobulin in transgenic mice. Nature 328: 530–532.

    PubMed  Google Scholar 

  62. S. Harris, M. McClenaghan, J. P. Simons, S. Ali, and A. J. Clark (1991). Developmental regulation of the sheep beta-lactoglobulin gene in the mammary gland of transgenic mice. Dev.Genet. 12: 299–307.

    PubMed  Google Scholar 

  63. J.-M. Hyttinen, V.-P. Korhonen, M. O. Hiltunen, S. My¨ oh¨ anen, and J. J¨ anne (1998). High-level expression of bovine ¯-lactoglobulin gene in transgenic mice. J.Biotech. 61: 191–198.

    Google Scholar 

  64. M. Messer and C. Elliot (1987). Changes in ®-lactalbumin, total lactose, UDP-galactose hydrolase and other factors in tammar wallaby (Macropus eugenii) milk during lactation. Aust.J.Biol. Sci. 40: 37–46.

    Google Scholar 

  65. G. W. Robinson, R. A. McKnight, G. H. Smith, and L. Hennighausen (1995). Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for establishment of terminal differentiation. Development 121: 2079–2090.

    PubMed  Google Scholar 

  66. R. Jenness (1986). Symposium: Species variation in mammary gland function. Lactational performance of various mammalian species. J.Dairy Sci. 69: 869–885.

    PubMed  Google Scholar 

  67. H.-H. Y. Kim and R. Jimenez-Flores (1994). Comparison of milk proteins using preparative isoelectric focusing followed by polyacrylamide gel electrophoresis. J.Dairy Sci. 77: 2177–2190.

    PubMed  Google Scholar 

  68. M. Messer, M. Griffiths, P. D. Rismiller, and D. C. Shaw (1997). Lactose synthesis in a monotreme, the echidna (Tachyglossus aculeatus): Isolation and amino acid sequence of echidna ®-lactalbumin. Comp.Biochem.Physiol. 118B: 403–410.

    Google Scholar 

  69. P. K. Qasba and S. Kumar (1997). Molecular divergence of lysozymes and ®-lactalbumin. Crit.Rev.Biochem.Mol.Biol. 32(4):255–306.

    PubMed  Google Scholar 

  70. C. P. Piotte, C. J. Marshall, M. J. Hubbard, C. Collet, and M. R. Grigor (1997). Lysozyme and ®-lactalbumin from the milk of a marsupial, the common brushtailed possum (Trichosurus vulpecula). Biochim.Biophys.Acta 1336: 235–242.

    PubMed  Google Scholar 

  71. K. Nicholas, M. Loughnan, M. Messer, S. Munks, M. Griffiths, and D. Shaw (1989). Isolation, partial sequence and asynchronous appearance during lactation of lysozyme and alpha-lactalbumin in the milk of a marsupial, the common ringtail possum (Pseudocheirus peregrinus). Comp.Biochem.Physiol. 94B(4):775–778.

    Google Scholar 

  72. J. H. Nuijens, P. H. C. van Berkel, and F. L. Schanbacher (1996). Structure and biological actions of lactoferrin. J.Mam.Gland Biol.Neoplasia 1(3): 285–295.

    Google Scholar 

  73. P. H. van Berkel, M. M. Welling, M. Geerts, H. A. van Veen, B. Ravensbergen, M. Salaheddine, E. K. Pauwells, F. Pieper, J. H. Nuijens, and P. H. Nibbering (2002). Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat.Biotechnol. 20: 484–487.

    PubMed  Google Scholar 

  74. C. Puissant, M. Sarmadi-Bayat, E. Devinoy, and L. M. Houdebine (1994). Variation of transferrin mRNA concentration in the rabbit mammary gland during the pregnancy-lactation-weaning cycle and in cultured mammary cells. A comparison with the other major milk protein mRNAs. Eur. J.Endocrinol. 130: 522–529.

    PubMed  Google Scholar 

  75. F. L. Schanbacher, R. E. Goodman, and R. S. Talhouk (1993). Bovine mammary lactoferrin: Implications from messenger ribonucleic acid (mRNA) sequence and regulation contrary to other milk proteins. J.Dairy Sci. 76: 3812–3831.

    PubMed  Google Scholar 

  76. K. R. Nicholas (1988). Control of milk protein synthesis in the tammar wallaby: Amodel system to study prolactin-dependent development. In C. H. Tyndale-Biscoe and P. A. Janssens (eds.), The Developing Marsupial: Models for Biomedical Research, Springer-Verlag, Heidelberg, Germany, pp. 68–85.

    Google Scholar 

  77. M. J. Close, A. R. Howlett, C. D. Roskelley, P. Y. Desprez, N. Bailey, B. Rowning, C. T. Teng, M. R. Stampfer, and P. Yaswen (1997). Lactoferrin expression in mammary epithelial cells is mediated by changes in cell shape and actin cytoskeleton. J.Cell Sci. 110: 2861–2871.

    PubMed  Google Scholar 

  78. L. H. Chen and M. J. Bissell (1989). A novel regulatory mechanism for whey acidic protein gene expression. Cell Regul 1: 45–54.

    PubMed  Google Scholar 

  79. C. P. Piotte and M. R. Grigor (1996). Anovel marsupial protein expressed by the mammary gland only during early lactation and related to the Kunitz proteinase inhibitors. Arch.Biochem. Biophys. 330: 59–64.

    PubMed  Google Scholar 

  80. K. J. Simpson, D. C. Shaw, and K. R. Nicholas (1998). Developmentally-regulated expression of a putative protease inhibitor gene in the lactating mammary gland of the tammar wallaby, Macropus eugenii. Comp.Biochem.Physiol. 120B(3):535–541.

    Google Scholar 

  81. D. Chechova, V. Jonaka, and F. Sorm (1971). Primary structure of trypsin inhibitor from cow colostrum (com-ponent B2). Collect.Czech.Chem.Commun. 36: 3342–3357.

    Google Scholar 

  82. K. R. Nicholas, J. A. Fisher, E. Muths, J. Trott, P. A. Janssens, C. Reich, and D. C. Shaw (2001). Secretion of whey acidic protein and cystatin is down regulated at mid-lactation in the red kangaroo (Macropus eugenii). Comp.Biochem.Physiol. 129A: 851–858.

    Google Scholar 

  83. J. F. Trott, M. J. Wilson, R. C. Hovey, D. C. Shaw, and K. R. Nicholas (2002). Expression of novel lipocalin-like milk protein gene is developmentally-regulated during lactation in the tammar wallaby, Macropus eugenii. Gene 283: 287–97.

    PubMed  Google Scholar 

  84. C. P. Piotte, A. K. Hunter, C. J. Marshall, and M. R. Grigor (1998). Phylogenetic analysis of three lipocalins present in the milk of Trichosurus vulpecula (Phalangeridae, Marsupialia). J.Mol.Evol. 46(3): 361–369.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaylene J. Simpson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simpson, K.J., Nicholas, K.R. The Comparative Biology of Whey Proteins. J Mammary Gland Biol Neoplasia 7, 313–326 (2002). https://doi.org/10.1023/A:1022856801175

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022856801175

Navigation