Skip to main content
Log in

Encapsulation of nickel(II) and copper(II) by a tetraazamacrocyclic ligand

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A tetraazamacrocyclic ligand, L, containing six non-equivalent benzene rings, derived from the condensation of benzil with 1,2- diaminobenzene, has been isolated and its complexes [MLCl2] (M = Ni2+ and Cu2+) prepared and characterized by elemental analysis, i.r., u.v.–vis., e.p.r. spectral studies, magnetic moments, redox potentials and conductivity measurements. The complexes have axially elongated octahedral geometries with two axial chlorines, and adopt the trans-configuration. These studies also indicate the covalent nature and the high-spin octahedral structure for these complexes. A cyclic voltammetric investigation reveals that the complexes exhibit a single one-electron redox couple, as anticipated for a copper(II) complex (Cu2+/Cu+) and a single two-electron redox couple for a nickel(II) complex (Ni2+/Ni0). The electrochemical processes are considered quasi-reversible. Antimicrobial activities of the ligand and the complexes have been tested against Bacillus megaterium and Candida tropicallis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.Y. Choi, K.M. Chun and I.H. Suh, Inorg. Chem. Commun., 2, 210 (1999).

    Google Scholar 

  2. E.M., Martin, R.D. Bereman and P. Singh, Inorg. Chim. Acta, 30, 957 (1991).

    Google Scholar 

  3. E.M. Martin, R.D. Bereman and J. Dorfman, Inorg. Chim. Acta, 176, 247 (1990).

    Google Scholar 

  4. D.E. Fenton, U. Casellato, P.A. Vigato and M. Vidali, Inorg. Chim. Acta, 95, 187 (1984).

    Google Scholar 

  5. N. Kitajima and Y. Morooko, Chem. Rev., 94, 737 (1994).

    Google Scholar 

  6. L. Casella and L. Rigoni, J. Chem. Soc., Chem. Commun., 1668 (1985).

  7. G. Albertin, E. Bordignon and A.A. Orio, Inorg. Chem., 14, 1411 (1975).

    Google Scholar 

  8. B.S. Garg and L. Kapur, Inorg. Chim. Acta, 173, 223 (1990).

    Google Scholar 

  9. W. Zishen, L. Zhiping and Y. Zhenhuan, Transition Met. Chem., 18, 291 (1993).

    Google Scholar 

  10. A.K. Usha and S. Chandra, Synth. React. Inorg. Met. Org. Chem., 22, 1565 (1992).

    Google Scholar 

  11. R.W. Hay, B. Jeragh, G. Ferguson, B. Kaitner and B.L. Ruhl, J Chem. Soc., Dalton Trans., 1531 (1982).

  12. T. Ito, M. Kato and H. Ito, Bull. Chem. Soc. Jpn., 57, 2641 (1984).

    Google Scholar 

  13. R. Vicente, A. Escuer, J. Ribas and X. Solans. Inorg. Chem., 31, 1726 (1992).

    Google Scholar 

  14. A. Escuer, R. Vicente, J. Ribas, M.S. El Fallah and X. Solans, Inorg. Chem., 32, 1033 (1993).

    Google Scholar 

  15. R. Vicente, A. Escuer, J. Ribas, M.S. El Fallah, X. Solans and M.J. Font-Bardia, Inorg. Chem., 34, 1278 (1995).

    Google Scholar 

  16. A. Escuer, R. Vicente, M.S. El Fallah, X. Solans and M.J. Font-Bardia. J. Chem. Soc., Dalton Trans., 1013 (1996).

  17. K.Y. Choi, M.R. Oh and I.H. Suh, Chem. Lett., 147 (1997).

  18. K.Y. Choi, H. Ryu and I.H. Suh, Polyhedron, 17, 1241 (1998).

    Google Scholar 

  19. R.S. Sharma and W.T. Mehrotra, J. Ind. Council Chem., 17, 43 (2000).

    Google Scholar 

  20. W.P Singh and V.N. Singh, Synth. React. Inorg. Met. Org. Chem., 27, 695 (1997).

    Google Scholar 

  21. K. Mochizuki and T. Kando, Inorg. Chem., 34, 6241 (1995).

    Google Scholar 

  22. K.Y. Choi, S.N. Choi and I.H. Suh, Polyhedron, 17, 1415 (1998).

    Google Scholar 

  23. R. Vicente, A. Escuer, M.S. El Fallah, X. Solans and M.J. Font-Bardia, Inorg. Chim. Acta, 261, 227 (1997).

    Google Scholar 

  24. D.D. Perrin, W.L.F. Armarego and D.R. Perrin, Purification of Laboratory Chemicals. 2nd edn., Pergamon Press, New York, 1985.

    Google Scholar 

  25. C.H. Collins, P.M. Lyne and J.M. Grange, Microbiological Methods, 3rd edit., Butterworth & Co., 1989, p. 410.

  26. K.R. Koch, J. Coord. Chem., 22, 289 (1991).

    Google Scholar 

  27. W.J. Geary, Coord. Chem. Rev., 7, 81 (1971).

    Google Scholar 

  28. S.G. Kang, J.K. Kweon and S.K. Jung, Bull. Korean Chem. Soc., 12, 483(1991).

    Google Scholar 

  29. K.Y. Choi, Y.J. Kim, H. Ryu and I.H. Suh, Inorg. Chem. Commun., 2, 176 (1999).

    Google Scholar 

  30. B.N. Figgis, Introduction to Ligand Fields. Wiley, New Delhi, 1966.

  31. R. Ruiz, J. Sanz, B. Cervera, F. Lloret, M. Julve, C. Bois, J. Faus, and M.C. Munoz. J. Chem. Soc., Dalton Trans., 1623 (1993).

  32. A.L. Nivorozhkin, H. Toflund, P.L. Jorgensen and L.E. Nivorozhkin, J. Chem, Soc., Dalton Trans., 1215 (1996).

  33. G.S. Patterson and R.H. Holm, Bioinorg. Chem., 4, 257 (1975).

    Google Scholar 

  34. L. Aronne, B.C. Dunn, J.R. Vyvyan, C.W. Souvignier, M.J. Mayer, T.A. Harwood, C.A. Salhi, S.N. Goldie, L.A. Ochrymowycz and B.D. Rorabacher, Inorg. Chem., 34, 357 (1995).

    Google Scholar 

  35. A.J. Bard and L.R. Faukner, in Masson, (ed.) Electrochemistry, Adaptation Francaise, Paris, 1983, p 239.

    Google Scholar 

  36. W.R. McWhinne, J. Inorg. Nucl. Chem., 27, 1063 (1965).

    Google Scholar 

  37. K.K. Narang, J.P. Pandey and V.P. Singh, Polyhedron, 13, 529 (1994).

    Google Scholar 

  38. W.E. Blumberg and Y. Peisach, J. Biol Chem., 240, 870 (1965).

    Google Scholar 

  39. Y. Gok and S. Karabocek, J. Coord. Chem., 40, 203 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aqra, F.M. Encapsulation of nickel(II) and copper(II) by a tetraazamacrocyclic ligand. Transition Metal Chemistry 28, 224–228 (2003). https://doi.org/10.1023/A:1022975829744

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022975829744

Keywords

Navigation