Skip to main content
Log in

Invariant Euler–Lagrange Equations and the Invariant Variational Bicomplex

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

In this paper, we derive an explicit group-invariant formula for the Euler–Lagrange equations associated with an invariant variational problem. The method relies on a group-invariant version of the variational bicomplex induced by a general equivariant moving frame construction, and is of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, I. M.: Introduction to the variational bicomplex, Contemp. Math. 13 (1992), 51–73.

    Google Scholar 

  2. Anderson, I. M.: The Vessiot handbook, Technical Report, Utah Sate University, 2000.

  3. Anderson, I. M.: The variational bicomplex, Utah State Technical Report, 1989.

  4. Anderson, I. M. and Fels, M.: Symmetry reduction of variational bicomplexes and the principle of symmetric criticality, Amer. J. Math. 11 (1997), 609–670.

    Google Scholar 

  5. Anderson, I. M. and Pohjanpelto, J.: The cohomology of invariant of variational bicomplexes, Acta Appl. Math. 4 (1995), 3–19.

    Google Scholar 

  6. Bryant, R. L.: A duality theorem for Willmore surfaces, J. Differential Geom. 2 (1984), 23–53.

    Google Scholar 

  7. Carathéodory, C.: —Ñber die Variationsrechnung bei mehrfachen Integralen, Acta Sci. Mat. (Szeged) (1929), 193–216.

  8. Cartan, É.: —La méthode du repère mobile, la théorie des groupes continus, et les espaces generalizes, Exposés de Géométrie No. 5, Hermann, Paris, 1935.

    Google Scholar 

  9. Dedecker, P.: Calcul des variations et topologie algébrique, Mém. Soc. Roy. Sci. Liège 19 (1957), 1–216.

    Google Scholar 

  10. De Donder, T.: Théorie invariantive du calcul de variations, Gauthier-Villars, Paris, 1935.

    Google Scholar 

  11. Eisenhart, L. P.: A Treatise on the Differential Geometry of Curves and Surfaces, Ginn, Boston, 1909.

    Google Scholar 

  12. Euler, L.: Methodus Inveniendi Lineas Curvus(Lausanne, 1744), Opera Omnia, Ser.1, 24, Füssli, Zurich, 1960.

  13. Fels, M. and Olver, P. J.: On relative invariants, Math. Ann. 30 (1997), 701–732.

    Google Scholar 

  14. Fels, M. and Olver, P. J.: Moving coframes. I. A practical algorithm, Acta Appl. Math. 51 (1998), 161–213.

    Google Scholar 

  15. Fels, M. and Olver, P. J.: Moving coframes. II. Regularization and theoretical foundations, Acta Appl. Math. 5 (1999), 127–208.

    Google Scholar 

  16. Fushchich, W. I. and Yegorchenko, I. A.: Second-order differential invariants of the rotation group On and of its extensions: E(n), P(1 n), G(1 n), Acta Appl. Math. 2 (1992), 69–92.

    Google Scholar 

  17. Griffiths, P. A.: On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry, Duke Math. J. 4 (1974), 775–814.

    Google Scholar 

  18. Griffiths, P. A.: Exterior Differential Systems and the Calculus of Variations, Progr. in Math. 25, Birkhäuser, Boston, 1983.

    Google Scholar 

  19. Guggenheimer, H. W.: Differential Geometry, McGraw-Hill, New York, 1963.

    Google Scholar 

  20. Itskov, V.: Orbit reduction of exterior differential systems and group-invariant variational problems, Contemp. Math. 28 (2001), 171–181.

    Google Scholar 

  21. Itskov, V.: Orbit reduction of exterior differential systems, PhD Thesis, University of Minnesota, 2002.

  22. Jensen, G. R.: Higher Order Contact of Submanifolds of Homogeneous Spaces, Lecture Notes in Math. 610, Springer-Verlag, New York, 1977.

    Google Scholar 

  23. Kamke, E.: Differentialgleichungen Lösungsmethoden und Lösungen, Vol.1, Chelsea, New York, 1971.

    Google Scholar 

  24. Lie, S.: Ñber Integralinvarianten und ihre Verwertung für die Theorie der Differentialgleichun-gen, Leipz. Berichte 4 (1897), 369–410; also Gesammelte Abhandlungen 6, B.G. Teubner, Leipzig, 1927, pp. 664–701.

    Google Scholar 

  25. Mackenzie, K.: Lie Groupoids and Lie Algebroids in Differential Geometry, London Math. Soc. Lecture Notes Ser. 124, Cambridge Univ. Press, Cambridge, 1987.

    Google Scholar 

  26. Mumford, D.: Elastica and computer vision, In: C. Bajaj (ed.), Algebraic Geometry and its Applications, Springer-Verlag, New York, 1994, pp. 491–506.

    Google Scholar 

  27. Olver, P. J.: Applications of Lie Groups to Differential Equations, 2nd edn, Grad. Texts in Math. 107, Springer-Verlag, New York, 1993.

    Google Scholar 

  28. Olver, P. J.: Equivalence and the Cartan form, Acta Appl. Math. 3 (1993), 99–136.

    Google Scholar 

  29. Olver, P. J.: Equivalence, Invariants, and Symmetry, Cambridge Univ. Press, Cambridge, 1995.

    Google Scholar 

  30. Olver, P. J.: Moving frames and singularities of prolonged group actions, Selecta Math. 6 (2000), 41–77.

    Google Scholar 

  31. Olver, P. J.: Joint invariant signatures, Found. Comput. Math. (2001), 3–67.

  32. Olver, P. J. and Pohjanpelto, J.: Moving frames for pseudo-groups. I. The Maurer-Cartan forms, Preprint, Univ. of Minnesota, 2002.

  33. Olver, P. J. and Pohjanpelto, J.: Moving frames for pseudo-groups. II. Differential invariants for submanifolds, Preprint, Univ. of Minnesota, 2002.

  34. Rund, H.: The Hamilton-Jacobi Theory in the Calculus of Variations,D.VanNostrand, Princeton, NJ, 1966.

    Google Scholar 

  35. Tsujishita, T.: On variational bicomplexes associated to differential equations, Osaka J. Math. 1 (1982), 311–363.

    Google Scholar 

  36. Tulczyjew, W. M.: The Lagrange complex, Bull. Soc. Math. France 105 (1977), 419–431.

    Google Scholar 

  37. Vinogradov, A. M.: The C-spectral sequence, Lagrangian formalism and conservation laws. I. The linear theory, J. Math. Anal. Appl. 10 (1984), 1–40.

    Google Scholar 

  38. Vinogradov, A. M.: The C-spectral sequence, Lagrangian formalism and conservation laws. II. The nonlinear theory, J. Math. Anal. Appl. 10 (1984), 41–129.

    Google Scholar 

  39. Vinogradov, A. M. and Krasil'shchik, I. S. (eds): Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Amer. Math. Soc., Providence, RI, 1998.

    Google Scholar 

  40. Zharinov, V. V.: Geometrical Aspects of Partial Differential Equations, World Scientific, Singapore, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kogan, I.A., Olver, P.J. Invariant Euler–Lagrange Equations and the Invariant Variational Bicomplex. Acta Applicandae Mathematicae 76, 137–193 (2003). https://doi.org/10.1023/A:1022993616247

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022993616247

Navigation