Skip to main content
Log in

The Oxidation of NdFeB Magnets

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation kinetics in air of a commercial NdFeB magnet have been investigated over the temperature range 335–500°C. The oxide microstructure has been characterized by SEM, XRD and cross-sectional TEM. The results show that the external scale formed consists of an outer layer of Fe2O3 and an inner layer of Fe3O4 but that the principal degradation process is the formation of an extensive zone of internal oxidation. HREM has been used to show that this zone contains NdO particles embedded in an α-Fe matrix. These particles are discrete and very small, approximately 2 nm in diameter, and have an amorphous structure. The α-Fe matrix has a columnar grain structure with a grain width of approximately 100 nm. It is argued that the high rates of internal oxidation arise because the external-oxide layers are not protective at the oxidation temperature, and oxygen penetrates to the zone front by fast diffusion along the columnar α-Fe grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Blank and E. Adler, Proc. 9th Int. Workshop on Rare Earth Magnets and their Applications (Badsoden, Germany, 1987), p. 537.

    Google Scholar 

  2. A. S. Kim and J. M. Jacobson, IEEE Trans. Magn. Magn. 23, 2509(1987).

    Google Scholar 

  3. J. Jacobson and A. Kim, J. Appl. Phys. 61, 3763(1987).

    Google Scholar 

  4. J. M. Le Breton and J. Teillet, IEEE Trans. Magn. Magn. 26, 2652(1990).

    Google Scholar 

  5. J. M. Le Breton and J. Teillet, J. Magn. Magn. Mater. 101, 347(1991).

    Google Scholar 

  6. J. M. Le Breton, J. Teillet, P. J. McGuiness, D. S. Edgley, and I. R. Harris, IEEE Trans. Magn. 28, 2157(1992).

    Google Scholar 

  7. D. S. Edgley, J. M. Le Breton, S. Stayaert, F. M. Ahmed, I. R. Harris, and J. Teillet, J. Magn. Magn. Mater. 128, L1(1993).

    Google Scholar 

  8. D. S. Edgley, J. M. Le Breton, S. Stayaert, F. M. Ahmed, I. R. Harris, and J. Teillet, J. Magn. Magn. Mater. 173, 29(1997).

    Google Scholar 

  9. C. Wagner, Z. Elektrochem. 63, 772(1959).

    Google Scholar 

  10. S. Steyaert, J. M. Le Breton, and J. Teillet, J. Phys. D: Appl. Phys. 31, 1534(1998).

    Google Scholar 

  11. I. Barin, Thermochemical Data of Pure Substances, Federal Republic of Germany, 1993.

  12. B. Hallemans, P. Wollants, and J. R. Roose, J. Phase Diag. Equil. 16, 137(1995).

    Google Scholar 

  13. D. J. Young and O. Ahmed, Mater. Sci. Forum, in press.

  14. F. Gesmundo, F. Viani, and Y. Niu, Oxid. Met. 47, 355(1997).

    Google Scholar 

  15. F. Maak, Z Metallkunde 52, 538(1961).

    Google Scholar 

  16. J. H. Swisher and E. T. Turkdogan, Trans AIME 239, 426(1997).

    Google Scholar 

  17. D. P. Whittle, Y. Shida, G. C. Wood, F. H. Stott, and B. D. Bastow, Phil. Mag. A. 46, 931(1982).

    Google Scholar 

  18. N. Belen, P. Tomaszewicz, and D. J. Young, Oxid. Met. 22, 227(1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Evans, H., Harris, I. et al. The Oxidation of NdFeB Magnets. Oxidation of Metals 59, 167–182 (2003). https://doi.org/10.1023/A:1023078218047

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023078218047

Navigation