Skip to main content
Log in

Influence of Preparation Conditions on Acyclovir-Loaded Poly-d,l-Lactic Acid Nanospheres and Effect of PEG Coating on Ocular Drug Bioavailability

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The evaluation of nanosphere colloidal suspensions containing acyclovir as potential ophthalmic drug delivery systems was carried out. The influence of polymer molecular weight and type and concentration of various surfactants on nanosphere properties was studied. The ocular pharmacokinetics of acyclovir-loaded nanoparticles was evaluated in vivo and compared with an aqueous suspension of the free drug.

Methods. Nanospheres were made up of poly-d,l-lactic acid (PLA). The colloidal suspension was obtained by a nanoprecipitation process. The surface properties of PLA nanospheres were changed by the incorporation of pegylated 1,2-distearoyl-3-phosphatidylethanol- amine. The mean size and zeta potential of the nanospheres were determined by light scattering analysis. The acyclovir loading capacity and release were also determined. In vivo experiments were carried out on male New Zealand rabbits. The ocular tolerability of PLA nanospheres was evaluated by a modified Draize test. The aqueous humor acyclovir levels were monitored for 6 h to determine the drug's ocular bioavailability for the various formulations.

Results. A reduction of the mean size and a decrease of the absolute zeta potential of PLA nanospheres resulted from increasing the surfactant concentration. The higher the polymer molecular weight, the smaller the nanosphere mean size. PEG-coated and uncoated PLA nanospheres showed a sustained acyclovir release and were highly tolerated by the eye. Both types of PLA nanospheres were able to increase the aqueous levels of acyclovir and to improve the pharmacokinetics profile, but the efficacy of the PEG-coated nanospheres was significantly higher than that of the simple PLA ones.

Conclusions. PEG-coated PLA nanospheres can be proposed as a potential ophthalmic delivery system for the treatment of ocular viral infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. A. Jabs. Acyclovir for recurrent herpes simplex virus ocular disease. N. Engl. J. Med. 339:300-306 (1998).

    Google Scholar 

  2. Y. Ohashi. Treatment of herpetic keratitis with acyclovir: benefits and problems. Ophthalmologica 211:29-32 (1997).

    Google Scholar 

  3. G. W. Aylward, C. M. Claoue, R. J. Marsh, and N. Yasseem. Influence of oral acyclovir on ocular complications of herpes zoster ophthalmicus. Eye 8:70-74 (1994).

    Google Scholar 

  4. D. Pavan-Langston. Herpetic infections. In G. Smolin and R. A. Thoft (eds.), The Cornea, 3rd ed., Little Brown, Boston, Massachusetts, 1994, pp. 183-214.

    Google Scholar 

  5. I. Taskintuna, A. S. Banker, M. Flores-Aguilar, G. Bergeron-Lynn, K. A. Aldern, K. Y. Hostetler, and W. R. Freeman. Evaluation of a novel lipid prodrug for intraocular drug delivery: effect of acyclovir diphosphate dimyristoylglycerol in a rabbit model with herpes simplex virus-1 retinitis. Retina 17:57-64 (1997).

    Google Scholar 

  6. M. Fresta, A. M. Panico, C. Bucolo, C. Giannavola, and G. Puglisi. Characterization and in-vivo ocular absorption of liposome-encapsulated acyclovir. J. Pharm. Pharmacol. 51:565-576 (1999).

    Google Scholar 

  7. L. Law, K. J. Huang, and C. H. Chiang. Acyclovir-containing liposomes for potential ocular delivery. Corneal penetration and absorption. J. Control. Release 63:135-140 (2000).

    Google Scholar 

  8. G. Norley, D. Sendele, L. Huang, and B. T. Rouse. Inhibition of herpes simplex virus replication in the mouse cornea by drug-containing immunoliposomes. Invest. Ophthalmol. Vis. Sci. 28:591-595 (1987).

    Google Scholar 

  9. I. Genta, B. Conti, P. Perugini, F. Pavanetto, A. Spadaro, and G. Puglisi. Bioadhesive microspheres for ophthalmic administration of acyclovir. J. Pharma. Pharmacol. 49:737-742 (1997).

    Google Scholar 

  10. P. Calvo, M. J. Alonso, J. L. Vila-Yato, and J. R. Robinson. Improved ocular bioavailability of indomethacin by novel ocular drug carriers. J. Pharm. Pharmacol. 48:1147-1152 (1996).

    Google Scholar 

  11. A. M. De Campos, A. Sanchez, and M. J. Alonso. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int. J. Pharm. 224:159-168 (2001).

    Google Scholar 

  12. P. Quellec, R. Gref, L. Perrin, E. Dellacherie, F. Sommer, J. M. Verbavatz, and M. L. Alonso. Protein encapsulation within polyethylene glycol-coated nanosphere. I. Physicochemical characterization. J. Biomed. Mater. Res. 42:45-54 (1998).

    Google Scholar 

  13. P. Quellec, R. Gref, E. Dellacherie, F. Sommer, M. D. Tran, and M. L. Alonso. Protein encapsulation within poly(ethylene glycol)-coated nanosphere. II. Controlled release properties. J. Biomed. Mater. Res. 47:388-395 (1999).

    Google Scholar 

  14. A. E. Hawley, L. Illum, and S. S. Davis. Preparation of biodegradable, surface engineered PLGA nanospheres with enhanced lymphatic drainage and lymph node uptake. Pharm. Res. 14:657-661 (1997).

    Google Scholar 

  15. M. Fresta, G. Fontana, C. Bucolo, G. Cavallaro, G. Giammona, and G. Puglisi. Ocular tolerability and in vivo bioavailability of poly(ethylene glycol) (PEG)-coated polyethyl-2-cyanoacrylate nanosphere-encapsulated acyclovir. J. Pharm. Sci. 90:288-297 (2001).

    Google Scholar 

  16. M. Ueda, A. Iwara, and J. Kreuter. Influence of the preparation methods on the drug release behaviour of loperamide-loaded nanoparticles. J. Microencapsul. 15:361-372 (1998).

    Google Scholar 

  17. C. Losa, L. Marchal-Heussler, F. Orallo, J. L. Vila Jato, and M. J. Alonso. Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm. Res. 10:80-87 (1993).

    Google Scholar 

  18. P. Le Corre, J. H. Rytting, V. Gajan, F. Chevanne, and R. Le Verge. In vitro controlled release kinetics of local anaesthetics from poly(D,L-lactide) and poly(lactide-co-glycolide) microspheres. J. Microencapsul. 14:243-255 (1997).

    Google Scholar 

  19. M. T. Peracchia, C. Vauthier, D. Desmaele, A. Gulik, J. C. Dedieu, M. Demoy, J. d'Angelo, and P. Couvreur. Pegylated nanoparticles from a novel methoxypolyethylene glycol cyanoacrylate-hexadecyl cyanoacrylate amphiphilic copolymer. Pharm. Res. 15:550-556 (1998).

    Google Scholar 

  20. M. Leroueil-Le Verger, L. Fluckiger, Y. I. Kim, M. Hoffman, and P. Maincent. Preparation and characterization of nanoparticles containing an antihypertensive agent. Eur. J. Pharm. Biopharm. 46:137-143 (1998).

    Google Scholar 

  21. B. Berne and R. Pecora. Dynamic Light Scattering, John Wiley & Sons, New York, 1976.

    Google Scholar 

  22. B. Chu. Laser Light Scattering, Academic Press, New York, 1974.

    Google Scholar 

  23. R. W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, and N. A. Peppas. Mechanism of solute release from porous hydrophilic polymers. Int. J. Pharm. 15:25-35 (1983).

    Google Scholar 

  24. P. L. Ritger and N. A. Peppas. A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 5:23-36 (1987).

    Google Scholar 

  25. F. Thermes, S. Molon-Nablot, and J. Grove. Effects of acetylcysteine on rabbit conjuctival and corneal surface. Invest. Ophthalmol. Vis. Sci. 32:2958-2963 (1991).

    Google Scholar 

  26. O. McDonald and J. A. Shedduck. Eye irritation. In F. M. Marzulli and H. I. Maibach (eds.), Advances in Modern Toxicology, vol. 4, John Wiley & Sons, New York, 1977, pp. 139-191.

    Google Scholar 

  27. D. Quintanar-Guerrero, E. Allémann, E. Doelker, and Fessi H. A mechanistic study of the formation of polymer nanoparticles by the emulsification–diffusion technique. Colloid. Polym. Sci. 275:640-647 (1997).

    Google Scholar 

  28. P. Wehrle, B. Magenheim, and S. Benita. The influence of process parameters on the PLA nanoparticle size distribution, evaluated by means of factorial design. Eur. J. Pharm. Biopharm. 41:19-26 (1995).

    Google Scholar 

  29. V. C. F. Mosqueira, P. Legrand, R. Gref, and G. Barratt. In-vitro release kinetic studies of PEG-modified nanocapsules and nanospheres loaded with a lipophilic drug: halofantrine base. Proc. Int. Symp. Control. Rel. Bioact. Mater. 26:1074-1075 (1999).

    Google Scholar 

  30. V. C. F. Mosqueira, P. Legrand, H. Pinto-Alphandary, F. Puisieux, and G. Barratt. Poly(D,L-lactide) nanocapsules prepared by a solvent displacement process: influence of the composition on physicochemical and structural properties. J. Pharm. Sci. 89:614-626 (2000).

    Google Scholar 

  31. F. Chouinard, S. Buczkowski, and V. Lenaerts. Poly(alkylcyanoacrylate) nanocapsules: physicochemical characterization and mechanism of formation. Pharm. Res. 11:869-874 (1994).

    Google Scholar 

  32. R. H. Müller. Colloidal Carriers for Controlled Drug Delivery and Targeting, CRC Press, Ann Arbor, Michigan, 1991.

    Google Scholar 

  33. M. F. Zambaux, F. Bonneaux, R. Gref, E. Dellacherie, and C. Vigneron. Preparation and characterization of protein C-loaded PLA nanoparticles. J. Control. Release 60:179-188 (1999).

    Google Scholar 

  34. T. L. Ke, G. Cagle, B. Schlech, O. J. Lorenzetti, and J. Mattern. Ocular bioavailability of ciprofloxacin in sustained release formulations. J. Ocul. Pharmacol. Ther. 17:555-563 (2001).

    Google Scholar 

  35. R. Herrero-Vanrell, A. Fernandez-Carballido, G. Frutos, and R. Cadorniga. Enhancement of the mydriatic response to tropicamide by bioadhesive polymers. J. Ocul. Pharmacol. Ther. 16:419-428 (2000).

    Google Scholar 

  36. S. Tran, D. Malli, F. A. Chrzanowski, M. M. Puc, M. S. Matthews, and C. W. Hewitt. Site-specific immunosuppression using a new formulation of topical cyclosporine A with polyethylene glycol-8-glyceryl caprylate/caprate. J. Surg. Res. 83:136-140 (1999).

    Google Scholar 

  37. G. Cavallaro, M. Fresta, G. Giammona, G. Puglisi, and A. Villari. Entrapment of β-lactams antibiotics on polyethylcyanoacrylate nanoparticles. Studies on the possible in vivo application of this colloidal delivery system. Int. J. Pharm. 111:31-41 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Fresta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giannavola, C., Bucolo, C., Maltese, A. et al. Influence of Preparation Conditions on Acyclovir-Loaded Poly-d,l-Lactic Acid Nanospheres and Effect of PEG Coating on Ocular Drug Bioavailability. Pharm Res 20, 584–590 (2003). https://doi.org/10.1023/A:1023290514575

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023290514575

Navigation