Skip to main content
Log in

Oxide Semiconductor Gas Sensors

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Semiconductor gas sensors utilize porous polycrystalline resistors made of semiconducting oxides. The working principle involves the receptor function played by the surface of each oxide grain and the transducer function played by each grain boundary. In addition, the utility factor of the sensing body also takes part in determining the gas response. Therefore, the concepts of sensor design are determined by considering each of these three key factors. The requirements are selection of a base oxide with high mobility of conduction electrons and satisfactory stability (transducer function), selection of a foreign receptor which enhances surface reactions or adsorption of target gas (receptor function), and fabrication of a highly porous, thin sensing body (utility factor). Recent progress in sensor design based on these factors is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Seiyama, A. Kato, K. Fujiishi and M. Nagatani, Anal. Chem. 34 (1962) 1502.

    Google Scholar 

  2. N. Taguchi, Patent, 45-38200 (1962).

  3. N. Yamazoe, J. Fuchigami, M. Kishikawa and T. Seiyama, Surf. Sci. 86 (1979) 335.

    Google Scholar 

  4. C. Xu, J. Tamaki, N. Miura and N. Yamazoe, Sensors Actuators B 3 (1991) 147.

    Google Scholar 

  5. N. Yamazoe, Y. Kurokawa and T. Seiyama, in: Proc. of Int. Meet. Chemical Sensors (1983) p. 35.

  6. G. Sakai, N. Matsunaga, K. Shimanoe and N. Yamazoe, Sensors Actuators B 80 (2001) 125.

    Google Scholar 

  7. C. Xu, J. Tamaki, N. Miura and N. Yamazoe, J. Mater. Sci. 27 (1992) 963.

    Google Scholar 

  8. J. Tamaki, Z. Zhang, K. Fujimori, M. Akiyama, T. Harada and N. Yamazoe, J. Electrochem. Soc. 141 (1994) 2207.

    Google Scholar 

  9. S. Matsushima, T. Maekawa, J. Tamaki, N. Miura and N. Yamazoe, Nippon Kagakukaishi 1991 (1991) 1677.

  10. S. Matsushima, Y. Teraoka, N. Miura and N. Yamazoe, Jpn. J. Appl. Phys. 27 (1988) 1798.

    Google Scholar 

  11. T. Maekawa, J. Tamaki, N. Miura and N. Yamazoe, Chem. Lett (1991) 575.

  12. S. Matsushima, T. Maekawa, J. Tamaki, N. Miura and N. Yamazoe, Chem. Lett. (1989) 845.

  13. J. Tamaki, T. Maekawa, S. Matsushima, N. Miura and N. Yamazoe, Chem. Lett. (1990) 477.

  14. N. Yamazoe, Y. Kurokawa and T. Seiyama, Sensors Actuators 4 (1983) 283.

    Google Scholar 

  15. M. Akiyama, J. Tamaki, N. Miura and N. Yamazoe, Chem. Lett. (1991) 1611.

  16. T. Maekawa, J. Tamaki, N. Miura and N. Yamazoe, Chem. Lett. (1992) 639.

  17. T. Maekawa, J. Tamaki, N. Miura and N. Yamazoe, in: New Aspects of Spillover Effect in Catalysis, eds. T. Inui, K. Fujimoto, T. Uchijima and M. Masai (1993) p. 421.

  18. Y. Shimizu, M. Egashira and Y. Takao, J. Electrochem. Soc. 135 (1988) 2539.

    Google Scholar 

  19. Y. Anno, T. Maekawa, J. Tamaki, Y. Asano, K. Hayashi, N. Miura and N. Yamazoe, Sensors Materials 5 (1993) 135.

    Google Scholar 

  20. M. Akiyama, Z. Zhang, J. Tamaki, N. Miura, N. Yamazoe and T. Harada, Sensors Actuators B 13-14 (1993) 619.

    Google Scholar 

  21. T. Nakahara, K. Takahata and S. Matsuura, Proc. Symp. Chemical Sensors (1987) 55.

  22. T. Maekawa, J. Tamaki, N. Miura and N. Yamazoe, Sensors Actuators B 9 (1992) 63.

    Google Scholar 

  23. T. Nomura, Y. Matsuura, K. Takahata and S. Matsuura, Dig. 11th Chemical Sensor Symp. (1989) 13.

  24. T. Takada and K. Komatsu, Dig. Tech. Papers of Transducers (1987) 693.

  25. T. Takada, K. Suzuki and M. Nakane, Sensors Actuators B 13-14 (1993) 404.

    Google Scholar 

  26. Y. Okayama, Proc. 6th Sensor Symp. (1986) 101.

  27. N. Yamazoe, Y. Muto and T. Seiyama, Hyomen Kagaku 5 (1984) 55.

    Google Scholar 

  28. H. Yamaura, J. Tamaki, K. Moriya, N. Miura and N. Yamazoe, J. Electrochem. Soc. 143 (1996) L36.

    Google Scholar 

  29. H. Yamaura, J. Tamaki, K. Moriya, N. Miura and N. Yamazoe, J. Electrochem. Soc. 144 (1997) L158.

    Google Scholar 

  30. Y. Anno, J. Tamaki, Y. Asano, K. Hayashi, N. Miura and N. Yamazoe, Hyomen Kagaku 16 (1995) 474.

    Google Scholar 

  31. Y. Anno, T. Maekawa, J. Tamaki, Y. Asano, K. Hayashi, N. Miura and N. Yamazoe, Sensors Actuators B 24-25 (1995) 623.

    Google Scholar 

  32. T. Jinkawa, Master thesis.

  33. N.S. Baik, G. Sakai, N. Miura and N. Yamazoe, J. Am. Ceram. Soc. 83 (2000) 2983.

    Google Scholar 

  34. M. Shoyama and N. Hashimoto, Proc. Chem. Sensor Symp. 17, Suppl. B (2001) 10.

    Google Scholar 

  35. Y.G. Choi, G. Sakai, K. Shimanoe, N. Miura and N. Yamazoe, Sensors Actuators B (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamazoe, N., Sakai, G. & Shimanoe, K. Oxide Semiconductor Gas Sensors. Catalysis Surveys from Asia 7, 63–75 (2003). https://doi.org/10.1023/A:1023436725457

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023436725457

Navigation