Skip to main content
Log in

Cu–ZnO and Cu–ZnO/Al2O3 Catalysts for the Reverse Water-Gas Shift Reaction. The Effect of the Cu/Zn Ratio on Precursor Characteristics and on the Activity of the Derived Catalysts

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Comparison is made between Cu–ZnO and alumina-supported Cu–ZnO as catalysts for the reverse water-gas shift (RWGS) reaction. For both types of catalyst the Cu/Zn ratio has been varied between Cu-rich and Zn-rich compositions. By applying X-ray diffractometry, X-ray line broadening, optical reflectance spectroscopy and other techniques the effects on the structural and physical properties of the hydroxycarbonate precursors, the calcined products and the ultimately derived catalysts are determined. The presence of alumina decreases the crystallite size of the CuO and ZnO particles produced on calcination and at high Cu/Zn ratios increases the dispersion of copper in the final catalyst. The activities of the catalysts for the RWGS reaction at 513K are compared and the most active are shown to be those which are Cu rich (Cu/Zn > 3) and contain alumina as support. The activities of all the catalysts can be rationalized by referring the activity to unit surface area of copper metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Hansen, in: Handbook of Heterogeneous Catalysis, eds. G. Ertl, H. Knozinger and J. Weitkamp, Vol. 4 (VCH, Weinheim, 1997) p. 1856.

    Google Scholar 

  2. K. Kochloefl, in: Handbook of Heterogeneous Catalysis, eds. G. Ertl, H. Knozinger and J. Weitkamp, Vol. 4 (VCH, Weinheim, 1997) p. 1831.

    Google Scholar 

  3. R.G. Herman, K. Klier, G.W. Simmons, B.P. Finn, J.B. Bulko and T.P. Kobylinski, J. Catal. 56 (1979) 407.

    Google Scholar 

  4. K. Klier, Adv. Catal. 31 (1982) 243.

    Google Scholar 

  5. P. Gherardi, O. Ruggeri, F. Trifiro, A. Vaccari, G. Del Piero, G. Manara and B. Notari, in: Preparation of Catalysts III, eds. G. Poncelet, P. Grange and P.A. Jacobs (Elsevier, Amsterdam, 1983) p. 723.

    Google Scholar 

  6. G. Petrini and F. Garbassi, J. Catal. 90 (1984) 113.

    Google Scholar 

  7. C. Busetto, G. Del Piero, G. Manara, F. Trifiro and A. Vaccari, J. Catal. 85 (1984) 260.

    Google Scholar 

  8. S. Gusi, F. Trifiro, A. Vaccari and G. Del Piero, J. Catal. 94 (1985) 120.

    Google Scholar 

  9. R.M. Hoppener, E.B.M. Doesburg and J.J.F. Scholten, Appl. Catal. 25 (1986) 109.

    Google Scholar 

  10. B.S. Rasmussen, P.E. Højlund-Nielsen, J. Villadsen and J.B. Hansen, in: Preparation of Catalysts IV, eds. B. Delmon, P. Grange, P.A. Jacobs and G. Poncelet (Elsevier, Amsterdam, 1987) p. 785.

    Google Scholar 

  11. R.A. Hadden, P.J. Lambert and C. Ranson, Appl. Catal. A 122 (1995) L1.

    Google Scholar 

  12. J.-L. Li and T. Inui, Appl. Catal. A 137 (1996) 106.

    Google Scholar 

  13. G. Petrini, F. Montino, A. Bossi and F. Garbassi, in: Preparation of Catalysts III, eds. G. Poncelet, P. Grange and P.A. Jacobs (Elsevier, Amsterdam, 1983) p. 735.

    Google Scholar 

  14. P.B. Himelfarb, G.W. Simmons, K. Klier and R.G. Herman, J. Catal. 93 (1985) 442.

    Google Scholar 

  15. M.H. Stacey and M.D. Shannon, in: Reactivity of Solids, eds. P. Barret and L.C. Dufour (Elsevier, Amsterdam, 1985) p. 713.

    Google Scholar 

  16. P. Porta, S. De Rossi, G. Ferraris, M. Lo Jacono, G. Minelli and G. Moretti, J. Catal. 109 (1988) 367.

    Google Scholar 

  17. P. Porta, G. Fierro, M. Lo Jacono and G. Moretti, Catal. Today 2 (1988) 675.

    Google Scholar 

  18. G. Sengupta, D.P. Das, M.L. Kundu, S. Dutta, S.K. Roy, R.N. Sahay and R.K. Mishra, Appl. Catal. 55 (1989) 165.

    Google Scholar 

  19. P. Porta, S. De Rossi, G. Ferraris and F. Pompa, Sol. State Ionics 45 (1991) 35.

    Google Scholar 

  20. B.S. Clausen, G. Steffensen, B. Fabius, J. Villadsen, R. Feidenhans'l and H. Topsøe, J. Catal. 132 (1991) 524.

    Google Scholar 

  21. S. Fujita, A.M. Satriyo, G.C. Shen and N. Takezawa, Catal. Lett. 34 (1995) 85.

    Google Scholar 

  22. S. Fujita, M. Usui, H. Ito and N. Takezawa, J. Catal. 157 (1995) 403.

    Google Scholar 

  23. D. Waller, D. Stirling, F.S. Stone and M.S. Spencer, Faraday Disc. Chem. Soc. 87 (1989) 260.

    Google Scholar 

  24. A.Ya. Rozovskii, Yu.B. Kagan, G.I. Lin, E. Slivinskii, S.M. Loktov, G.L. Liberov and A.N. Bashkirov, Kinet. Katal. 17 (1976) 1314.

    Google Scholar 

  25. S. Fujita, M. Usi and N. Takezawa, J. Catal. 134 (1992) 220.

    Google Scholar 

  26. D. Stirling, F.S. Stone and M.S. Spencer, Stud. Surf. Sci. Catal. 75 (1992) 1507.

    Google Scholar 

  27. M.S. Spencer, Catal. Lett. 32 (1995) 8.

    Google Scholar 

  28. T.S. Askgaard, J.R. Nørskov, C.V. Ovesen and P. Stoltze, J. Catal. 156 (1995) 229.

    Google Scholar 

  29. G.I. Lin, K.P. Kotysev and A.Ya. Rozovskii, Stud. Surf. Sci. Catal. 130 (2000) 713.

    Google Scholar 

  30. J.S. Campbell, Ind. Eng. Chem. Proc. Des. Dev. 9 (1970) 588.

    Google Scholar 

  31. G.C. Chinchen and M.S. Spencer, Catal. Today 10 (1991) 293.

    Google Scholar 

  32. F.H. Chapple and F.S. Stone, Proc. Brit. Ceram. Soc. 1 (1964) 45.

    Google Scholar 

  33. S. Roberts, Phys. Rev. 118 (1960) 1509.

    Google Scholar 

  34. A.M. Pollard, M.S. Spencer, R.G. Thomas, P.A. Williams, J. Holt and J.R. Jennings, Appl. Catal. A 85 (1992) 1.

    Google Scholar 

  35. M.S. Spencer, Catal. Lett. 66 (2000) 255.

    Google Scholar 

  36. J.L. Jambor, Geol. Surv. Canad., Report of Activities, Part C, Paper 76-1C (1976).

  37. A.F. Wells, Acta Crystallogr. 4 (1951) 200.

    Google Scholar 

  38. S. Ghose, Acta Crystallogr. 17 (1964) 1051.

    Google Scholar 

  39. D. Stirling and F.S. Stone, Sol. State Ionics 63-65 (1993) 289.

    Google Scholar 

  40. O. Ruggeri, F. Trifiro and A. Vaccari, J. Sol. State Chem. 42 (1982) 120.

    Google Scholar 

  41. L. Lloyd, D.E. Ridler and M.V. Twigg, in: Catalyst Handbook, ed. M.V. Twigg, 2nd edn (Wolfe, London, 1989) p. 283.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stone, F.S., Waller, D. Cu–ZnO and Cu–ZnO/Al2O3 Catalysts for the Reverse Water-Gas Shift Reaction. The Effect of the Cu/Zn Ratio on Precursor Characteristics and on the Activity of the Derived Catalysts. Topics in Catalysis 22, 305–318 (2003). https://doi.org/10.1023/A:1023592407825

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023592407825

Navigation